首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Chromosomal DNA is exposed to continuous damage and repair. Cells contain a number of proteins and specific DNA repair systems that help maintain its correct structure. The SOS response was the first DNA repair system described in Escherichia coli induced upon treatment of bacteria with DNA damaging agents arrest DNA replication and cell division. Induction of the SOS response involves more than forty independent SOS genes, most of which encode proteins engaged in protection, repair, replication, mutagenesis and metabolism of DNA. Under normal growth conditions the SOS genes are expressed at a basal level, which increases distinctly upon induction of the SOS response. The SOS-response has been found in many bacterial species (e.g., Salmonella typhimurium, Caulobacter crescentus, Mycobacterium tuberculosis), but not in eukaryotic cells. However, species from all kingdoms contain some SOS-like proteins taking part in DNA repair that exhibit amino acid homology and enzymatic activities related to those found in E. coli. but are not organized in an SOS system. This paper presents a brief up-to-date review describing the discovery of the SOS system, the physiology of SOS induction, methods for its determination, and the role of some SOS-induced genes.  相似文献   

4.
The ppk gene encodes polyphosphate kinase (Ppk), an enzyme that catalyses the polymerization of inorganic phosphate into long chains of polyphosphate (polyP). An insertion mutation in ppk causes a decrease in adaptive mutation in Escherichia coli strain FC40. Adaptive mutation in FC40 mostly results from error-prone DNA polymerase IV (Pol IV), encoded by dinB; most of the antimutagenic phenotype of the ppk mutant disappears in a dinB mutant strain. In addition, the ppk mutant causes a decrease in growth-dependent mutations produced by overexpressing Pol IV. However, the amount of Pol IV protein is unchanged in the ppk mutant strain, indicating that the activity or fidelity of Pol IV is altered. Adaptive mutation is inhibited both by the absence of Ppk, which results in low amounts of polyP, and by overproduction of Ppk, which results in high amounts of polyP, suggesting that an optimal level of polyP is necessary. Taken together, these results suggest a novel mechanism involving polyP that directly or indirectly regulates DNA polymerase activity or fidelity.  相似文献   

5.
Translational stress-induced mutagenesis (TSM) refers to the elevated mutagenesis observed in Escherichia coli cells in which mistranslation has been increased as a result of mutations in tRNA genes (such as mutA) or by exposure to streptomycin. TSM does not require lexA-regulated SOS functions but is suppressed in cells defective for homologous recombination genes. Crude cell-free extracts from TSM-induced E. coli strains express an error-prone DNA polymerase. To determine whether DNA polymerase III is involved in the TSM phenotype, we first asked if the phenotype is expressed in cells defective for all four of the non-replicative DNA polymerases, namely polymerase I, II, IV, and V. By using a colony papillation assay based on the reversion of a lacZ mutant, we show that the TSM phenotype is expressed in such cells. Second, we asked if pol III from TSM-induced cells is error-prone. By purifying DNA polymerase III* from TSM-induced and control cells, and by testing its fidelity on templates bearing 3,N(4)-ethenocytosine (a mutagenic DNA lesion), as well as on undamaged DNA templates, we show here that polymerase III* purified from mutA cells is error-prone as compared with that from control cells. These findings suggest that DNA polymerase III is modified in TSM-induced cells.  相似文献   

6.
UVM is an SOS-independent inducible response characterized by elevated mutagenesis at a site-specific 3, N4-ethenocytosine (epsilonC) residue borne on M13 single-stranded DNA transfected into Escherichia coli cells pretreated with DNA-damaging agents. By constructing and using E. coli strain AM124 (polA polB umuDC dinB lexA1[Ind-]), we show here that the UVM response is manifested in cells deficient for SOS induction, as well as for all four of the 'non-replicative' DNA polymerases, namely DNA polymerase I (polA), II (polB), IV (dinB) and V (umuDC). These results confirm that UVM represents a novel, previously unidentified cellular response to DNA-damaging agents. To address the question as to whether the UVM response is accompanied by an error-prone DNA replication activity, we applied a newly developed in vitro replication assay coupled to an in vitro mutation analysis system. In the assay, circular M13 single-stranded DNA bearing a site-specific lesion is converted to circular double-stranded replicative-form DNA in the presence of cell extracts and nucleotide precursors under conditions that closely mimic M13 replication in vivo. The newly synthesized (minus) DNA strand is selectively amplified by ligation-mediated polymerase chain reaction (LM-PCR), followed by a multiplex sequence analysis to determine the frequency and specificity of mutations. Replication of DNA bearing a site-specific epsilonC lesion by cell extracts from uninduced E. coli AM124 cells results in a mutation frequency of about 13%. Mutation frequency is elevated fivefold (to 58%) in cell extracts from UVM-induced AM124 cells, with C --> A mutations predominating over C --> T mutations, a specificity similar to that observed in vivo. These results, together with previously reported data, suggest that the UVM response is mediated through the induction of a transient error-prone DNA replication activity and that a modification of DNA polymerase III or the expression of a previously unidentified DNA polymerase may account for the UVM phenotype.  相似文献   

7.
8.
We have introduced a mutD5 mutation (which results in defective 3′–5′-exonuclease activity of the ϵ proofreading subunit of DNA polymerase III holoenzyme) into excision-defective Escherichia coli strains with varying SOS responses to UV light. MutD5 increased the spontaneous mutation frequency in all strains tested, including recA430, umuC122::Tn5, and umuC36 derivatives. It had no effect of UV mutability or immutability in any strain or on misincorporation revealed by delayed photoreversal in UV-irradiated umuC36, umuC122::Tn5, or recA430 bacteria. It is concluded that the ϵ proofreading subunit of DNA polymerase III holoenzyme is excluded, inhibited, or inoperative during misincorporation and mutagenesis after UV.  相似文献   

9.
A number of error-prone DNA polymerases have been found in various eukaryotes, ranging from yeasts to mammals, including humans. According to partial homology of the primary structure, they are grouped into families B, X, and Y. These enzymes display a high infidelity on an intact DNA template, but they are accurate on a damaged template. Error-prone DNA polymerases are characterized by probabilities of base substitution or frameshift mutations ranging from 10?3 to 7.5 · 10?1 in an intact DNA, whereas the spontaneous mutagenesis rate per replicated nucleotide varies between 10?10 and 10?12. Low-fidelity polymerases are terminal deoxynucleotidyl transferase (TdT) and DNA polymerases β, ζ, κ, η, ι, λ, μ, and Rev1. The main characteristics of these enzymes are reviewed. None of them exhibits proofreading 3′ → 5′ exonuclease (PE) activity. The specialization of these polymerases consists in their capacity for synthesizing opposite DNA lesions (not eliminated by the numerous repair systems), which is explained by the flexibility of their active centers or a limited ability to express TdT activity. Classic DNA polymerases α, δ, ε, and γ cannot elongate primers with mismatched nucleotides at the 3′-end (which leads to replication block), whereas some specialized polymerases can catalyze this elongation. This is accompanied by overcoming the replication block, often at the expense of an increased mutagenesis rate. How can a cell exist under the conditions of this high infidelity of many DNA polymerase activities? Not all tissues of the body contain a complete set of low-fidelity DNA polymerases, although some of these enzymes are vitally important. In addition, cells “should not allow” error-prone DNA polymerases to work on undamaged DNA. After a lesion on the DNA template is bypassed, the cell should switch over from DNA synthesis catalyzed by specialized polymerases to the synthesis catalyzed by relatively high-fidelity DNA polymerases δ and ? (with an error frequency of 10?5 to 10?6) as soon as possible. This is done by forming complexes of polymerase δ or ? with proliferating cell nuclear antigen (PCNA) and replication factors RP-A and RF-C. These highly processive complexes show a greater affinity to correct primers than specialized DNA polymerases do. The fact that specialized DNA polymerases are distributive or weakly processive favors the switching. The fidelity of these polymerases is increased by the PE function of DNA polymerases δ and ε, as well as autonomous 3′ → 5′ exonucleases, which are widespread over the entire phylogenetic tree of eukaryotes. The exonuclease correction decelerates replication in the presence of lesions in the DNA template but increases its fidelity, which decreases the probability of mutagenesis and carcinogenesis.  相似文献   

10.
11.
The reml mutations of Saccharomyces cerevisiae confer a semi-dominant hyper-recombination/hyper-mutation phenotype. Neither reml mutant allele has any apparent meiotic affect. We have examined spontaneous mutation in reml-2 strains and demonstrate that the reml-2 mutation, like reml-1, confers an average 10-fold increase in reversion and forward mutation rates. Unlike certain yeast rad mutations with phenotypes similar to reml, strains containing reml are resistant to MMS and only slightly UV sensitive at very high doses. To understand the mutator phenotype of reml, we have used a double-mutant approach, combining the reml mutation with radiation-sensitive mutations affecting DNA repair. Double mutants of reml-2 and a mutation in the yeast error-prone repair group (rad6-1) or a mutation in excision repair (rad1-2 or rad4) maintain the hyper-mutation phenotype. Since mutation rates remain elevated in these double-mutant strains, it appears as if the mutations which occur in the presence of reml resemble spontaneous mutation since they do not require the action of a repair system.  相似文献   

12.
The mutagenic potency of the simple reversible intercalators isopropyl-OPC (iPr-OPC) and 9-aminoacridine (9-AA) is assessed in E. coli using reversion assays based on plasmids derived from pBR322 carrying various frameshift mutations within the tetracycline resistance gene in repetitive sequences: +/- 2 frameshift mutations within alternating GC sequences; +/- 1 frameshift mutation at runs of guanines. The results obtained show that iPr-OPC and 9-AA have a sequence specificity for mutagenesis: they revert +1 and -1 frameshift mutations within runs of monotonous G:C base pairs. The precise determination of the size of a small restriction fragment which contains the mutation allowed us to demonstrate that reversion occurred by -1 deletions for the +1 frameshift mutations and by +1 additions for the -1 frameshift mutations. The possible relations of this specific reversion with the base sequence specificity of the mutagenesis are briefly discussed.  相似文献   

13.
Escherichia coli possesses five known DNA polymerases (pols). Pol III holoenzyme is the cell's main replicase, while pol I is responsible for the maturation of Okazaki fragments and filling gaps generated during nucleotide excision repair. Pols II, IV and V are significantly upregulated as part of the cell's global SOS response to DNA damage and under these conditions, may alter the fidelity of DNA replication by potentially interfering with the ability of pols I and III to complete their cellular functions. To test this hypothesis, we determined the spectrum of rpoB mutations arising in an isogenic set of mutL strains differentially expressing the chromosomally encoded pols. Interestingly, mutagenic hot spots in rpoB were identified that are susceptible to the actions of pols I–V. For example, in a recA730 lexA (Def) mutL background most transversions were dependent upon pols IV and V. In contrast, transitions were largely dependent upon pol I and to a lesser extent, pol III. Furthermore, the extent of pol I-dependent mutagenesis at one particular site was modulated by pols II and IV. Our observations suggest that there is considerable interplay among all five E. coli polymerases that either reduces or enhances the mutagenic load on the E. coli chromosome.  相似文献   

14.
Delmas S  Matic I 《DNA Repair》2005,4(2):221-229
We studied how DNA divergence between recombining DNAs and the mismatch repair system modulate the SOS response in Escherichia coli. The observed positive log-linear correlation between SOS induction and DNA divergence, and the negative correlation between SOS induction and frequency of recombination, suggest that the level of SOS induction precisely reflects the difficulty of RecA protein to initiate a productive strand exchange process. Our results suggest that the mismatch repair system could contribute to this SOS induction more by affecting the RecA-catalyzed homology search than by acting on mismatched recombination intermediates. The propensity of the recombination machinery to promote recombination between the blocks of sequences with the highest identity results in the increasing ratios of merodiploids (partial diploids) over genuine recombinants (homologous replacements) with increasing DNA divergence. We discuss the role of molecular mechanisms involved in the control of the recombination between diverged DNA sequences in the maintenance of genomic stability and genome evolution.  相似文献   

15.
16.
17.
18.
Singlet oxygen ((1)O(2)) is a product of several biological processes and can be generated in photodynamic therapy, through a photosensitization type II mechanism. (1)O(2) is able to interact with lipids, proteins and DNA, leading to cell killing and mutagenesis, and can be directly involved with degenerative processes such as cancer and aging. In this work, we analyzed the cytotoxicity and mutagenesis induced after direct treatment of wild type and the DNA repair fpg and/or mutY deficient Escherichia coli strains with disodium 3,3'-(1,4-naphthylidene) diproprionate endoperoxide (NDPO(2)), which releases (1)O(2) by thermodissociation. The treatment induced cell killing and mutagenesis in all strains, but the mutY strain showed to be more sensitive. These results indicate that even (1)O(2) generated outside bacterial cells may lead to DNA damage that could be repaired by pathways that employ MutY protein. As (1)O(2) is highly reactive, its interaction with cell membranes may generate secondary products that could react with DNA, leading to mutagenic lesions.  相似文献   

19.
20.
DNA loop repair by Escherichia coli cell extracts   总被引:2,自引:0,他引:2  
The nick-directed DNA repair efficiency of a set of M13mp18-derived heteroduplexes containing 8-, 12-, 16-, 22-, 27-, 45-, and 429-nucleotide loops was determined by in vitro assay. Unpaired nucleotides of each heteroduplex reside within overlapping recognition sites for two restriction endonucleases, permitting independent evaluation of repair occurring on either DNA strand. Our results show that a strand break located either 3' or 5' to the loop is sufficient to direct heterology repair to the nicked strand in Escherichia coli extracts. Strand-specific repair by this system requires Mg2+ and the four dNTPs and is equally efficient on insertions and deletions. This activity is distinct from the MutHLS mismatch repair pathway. Strand specificity and repair efficiency are largely independent of the GATC methylation state of the DNA and presence of the products of mismatch repair genes mutH, mutL, and mutS. This study provides evidence for a loop repair pathway in E. coli that is distinct from conventional mismatch repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号