首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Most Escherichia coli (E. coli) strains do not cause disease, naturally living in the lower intestine and is expelled into the environment within faecal matter. Escherichia coli can utilize citrate under anaerobic conditions but not aerobic conditions. However, the underlying regulatory mechanisms are poorly understood. In this study, we explored regulatory mechanisms of citrate fermentation genes by global regulators ArcA and Fnr under anaerobic conditions. A gel mobility shift assay showed that the regulator proteins ArcA and Fnr binded to the promoter region localized between the citAB and citCDEFXGT operons. Subsequent assays confirmed that ArcA indirectly controled the expression of citrate fermentation genes via regulating CitA-CitB system, while Fnr directly regulated but also indirectly modulated citrate fermentation genes via controling CitA-CitB system. Deletions of arcA and fnr significantly reduced the growth of Escherichia coli in M9 medium with a citrate carbon source. We conclude that both ArcA and Fnr can indirectly control the citrate utilization via CitA-CitB system, while Fnr can also directly regulate the expression of citrate fermentation genes in E. coli under anaerobic conditions.  相似文献   

5.
6.
A comparison was made of the structures of the Fnr and ArcA modulons and regulons. The data on modulon composition were taken from published microarray assays, whereas regulons were characterized using comparative genomic approaches. The regulatory cascade involving Fnr and ArcA contributes greatly to the extension of the Fnr modulon over the Fnr regulon by adding operons of the ArcA modulon. The Fnr and ArcA regulons were shown to contain 26 and 16 operons, respectively. Ten operons had high-score and highly conserved sites for both Fnr and ArcA and were isolated as a so-called core of regulons.  相似文献   

7.
8.
9.
Kim SJ  Han YH  Kim IH  Kim HK 《IUBMB life》1999,48(2):215-218
To explore the oxygen response regulators involved in thiol peroxidase gene (tpx) expression in Escherichia coli, we constructed a single-copy tpx-lacZ operon fusion and monitored tpx-lacZ expression in various genetic backgrounds. Expression of the tpx-lacZ fusion was increased 4-fold by aerobic growth. Anaerobic expression of tpx-lacZ in either (delta)arcA or delta(fnr) strains was 2.5-fold depressed compared with that of the wild-type strain. The results of immunoblotting experiments also demonstrated that ArcA and Fnr regulatory proteins repressed thiol peroxidase gene expression during anaerobic growth. Inspection of the tpx promoter region revealed putative binding sites for ArcA and Fnr. It thus appears that ArcA and Fnr function as repressors by blocking the binding of RNA polymerase to the tpx promoter in E. coli under anaerobic growth conditions.  相似文献   

10.
The catabolite repressor/activator (Cra) protein is a global sensor and regulator of carbon fluxes through the central metabolic pathways of Gram-negative bacteria. To examine the nature of the effector (or effectors) that signal such fluxes to the protein of Pseudomonas putida, the Cra factor of this soil microorganism has been purified and characterized and its three-dimensional structure determined. Analytical ultracentrifugation, gel filtration, and mobility shift assays showed that the effector-free Cra is a dimer that binds an operator DNA sequence in the promoter region of the fruBKA cluster. Furthermore, fructose 1-phosphate (F1P) was found to most efficiently dissociate the Cra-DNA complex. Thermodynamic parameters of the F1P-Cra-DNA interaction calculated by isothermal titration calorimetry revealed that the factor associates tightly to the DNA sequence 5′-TTAAACGTTTCA-3′ (KD = 26.3 ± 3.1 nm) and that F1P binds the protein with an apparent stoichiometry of 1.06 ± 0.06 molecules per Cra monomer and a KD of 209 ± 20 nm. Other possible effectors, like fructose 1,6-bisphosphate, did not display a significant affinity for the regulator under the assay conditions. Moreover, the structure of Cra and its co-crystal with F1P at a 2-Å resolution revealed that F1P fits optimally the geometry of the effector pocket. Our results thus single out F1P as the preferred metabolic effector of the Cra protein of P. putida.  相似文献   

11.
12.
Microarrays are widely used for gene expression profiling. In the case of prokaryotes such arrays usually provide data about composition of modulons, groups of genes whose expression is influenced by a single regulatory system or external stimulus. Unlike modulons, regulons include only genes directly controlled by regulatory systems. Here we compared the structures of the Fnr and ArcA modulons and regulons. The data about modulon composition were taken from published microarray assays, whereas regulons were characterized using comparative genomic approaches. The Fnr and ArcA regulons were shown to contain 26 and 16 operons, respectively. Ten operons had high-score and highly conserved site for both Fnr and ArcA. These genes are the "core of regulons". Remarkably, all "core genes" encode enzymes involved in aerobic respiration and central metabolism. The Fnr-ArcA regulatory cascade plays an important role in expansion of the Fnr modulon.  相似文献   

13.
14.
A DNA fragment from Lactobacillus casei that restores growth to Escherichia coli and Salmonella typhimurium ptsH mutants on glucose and other substrates of the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) has been isolated. These mutants lack the HPr protein, a general component of the PTS. Sequencing of the cloned fragment revealed the absence of ptsH homologues. Instead, the complementation ability was located in a 120-bp fragment that contained a sequence homologue to the binding site of the Cra regulator from enteric bacteria. Experiments indicated that the reversion of the ptsH phenotype was due to a titration of the Cra protein, which allowed the constitutive expression of the fructose operon.  相似文献   

15.
Microbial cells possess numerous sensing/regulator systems in order to respond rapidly to environmental changes. Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. A group of global regulators, which include the one component Fnr protein and the two-component Arc system, coordinate the adaptive responses. To quantitate the contribution of Arc and FNR-dependent regulation under microaerobic conditions, the gene expression pattern of the electron transfer chain genes and the TCA cycle genes in wild-type E. coli, an arcA mutant, an fnr mutant, and a double arcA, fnr mutant, in glucose limited cultures and different oxygen concentrations was studied in chemostat cultures at steady state using QRT-PCR. It was found that the TCA cycle genes, icd, gltA, sucC, and sdhC are repressed by ArcA while Fnr has a minor or no effect on the expression of these genes under microaerobic conditions. The expression levels of the electron transfer chain genes, nuoA, ndh, and ubiE, were not significantly affected by either ArcA or Fnr regulation proteins, while a lower expression of cydA (up to 9-fold lower) and a higher expression of cyoA (up to 31-fold higher) were observed in cultures of the arcA mutant strain compared to those of the wild type. Since significantly higher NADH/NAD+ ratios were previously observed in cultures of the arcA mutant strain compared to the wild type it seems that the cytochrome o oxidase (the product of cyoABCDE) cannot efficiently support aerobic respiration when the cells are grown under microaerobic conditions.  相似文献   

16.
Dynactin is a complex motor protein involved in the retrograde axonal transport disturbances of which may lead to amyotrophic lateral sclerosis (ALS). Mice with hSOD1G93A mutation develop ALS-like symptoms and are used as a model for the disease studies. Similar symptoms demonstrate Cra1 mice, with Dync1h1 mutation. Dynactin heavy (DCTN1) and light (DCTN3) subunits were studied in the CNS of humans with sporadic ALS (SALS), mice with hSOD1G93A (SOD1/+), Dync1h1 (Cra1/+), and double (Cra1/SOD1) mutation at presymptomatic and symptomatic stages. In SALS subjects, in contrast to control cases, expression of DCTN1-mRNA but not DCTN3-mRNA in the motor cortex was higher than in the sensory cortex. However, the mean levels of DCTN1-mRNA and protein were lower in both SALS cortexes and in the spinal cord than in control structures. DCTN3 was unchanged in brain cortexes but decreased in the spinal cord on both mRNA and protein levels. In all SALS tissues immunohistochemical analyses revealed degeneration and loss of neuronal cells, and poor expression of dynactin subunits. In SOD1/+ mice both subunits expression was significantly lower in the frontal cortex, spinal cord and hippocampus than in wild-type controls, especially at presymptomatic stage. Fewer changes occurred in Cra1/SOD1 and Cra1/+ mice.It can be concluded that in sporadic and SOD1-related ALS the impairment of axonal retrograde transport may be due to dynactin subunits deficiency and subsequent disturbances of the whole dynein/dynactin complex structure and function. The Dync1h1 mutation itself has slight negative effect on dynactin expression and it alleviates the changes caused by SOD1G93A mutation.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号