共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship of cerebral neurotransmitters acetylcholine (ACh), noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5HT) to the energy state of the brain was examined in mice at various times following complete ischemia produced by decapitation, in gerbils submitted to transient global ischemia (10 min bilateral carotid artery occlusion, 5 or 30 min recirculation), and in rats 24 hr after irreversible microembolism. Ischemia caused significant reductions in brain monoamine concentrations. The alterations in NA, DA, and 5HT levels persisted during recirculation and were unrelated to energy restoration. They were accompanied by an increase in the concentrations of related metabolites, suggesting that synthesis was unable to compensate for the release of the transmitters at early post-ischemic time periods. As described for the catecholamines and 5HT, ischemia resulted in a significant decrease in ACh level, but recirculation was associated with a rapid increase in ACh concentration. Impaired synthesis and/or increased release of ACh can be responsible for the decrease in ACh concentration during ischemia. Early post-ischemic elevation of ACh may be related to the large increase in brain choline brought about by ischemia. 相似文献
2.
The high-affinity uptake of choline (HAChU) by freshly prepared crude synaptosomal fractions was employed as relative measure of regional brain cholinergic activity. TheV
max for uptake as determined by the accumulation of a tracer amount of3H-choline in the presence of unlabeled choline (0.2–2 M) varied 6 fold depending upon the region examined (striatum>hypothalamus>medulla-pons). HAChU was hemicholinium-3-sensitive and linear at 37°C from 1 to 8 min in all brain regions. Respective brain synaptosomal fractions derived from adult (12 week old) spontaneously hypertensive (SH) rats and normotensive Wistar Kyoto (WK) rats revealed no difference in theV
max for HAChU from synaptosomes derived from the striatum of either strain. However, there was a significant increase in theV
max for HAChU measured from the medulla-pons of SH rats compared with WK rats. In older (22 weeks) rats, theV
max for HAChU was 78% greater than age-matched WK control rats. In addition, a highly significant correlation was found between resting systolic blood pressure and theV
max for HAChU both in the medulla-pons (r=0.76) and hypothalamus (r=0.48). That the increase in HAChU in SH rats was not a consequence of elevated pressure, was indicated by the lack of effect of prolonged i.v. infusion of pressor agents in normotensive rats on HAChU. These findings are consistent with a role for brain cholinergic neurons in the maintenance of hypertension in SH rats. 相似文献
3.
The relationship of neurotransmitters and neuroeffectors to the energy state of the brain was examined in the gerbil model of ischemia after 5 and 15 min of bilateral common carotid artery occlusion only or with 1 hr of reperfusion. The gerbil brains were fixed by microwave irradiation and a total of 15 metabolites were measured from a single piece of tissue from either the hippocampus or the striatum. The rapid alterations in energy-related compounds and cyclic nucleotides appeared to be directly related both to the loss of oxygen and glucose during ischemia and the resupply of these nutrients during reflow. Significant reduction in the level of monoamines occurred prinicipally during reflow, at a time when the energy-related metabolites were restored. It is proposed that the changes in monoamines were triggered by other ischemic-induced events unrelated to energy depletion.Presented in part at the Nineteenth Annual Meeting of the American Society for Neurochemistry, 1988 相似文献
4.
To provide insights into the effects of temporary focal ischemia on the function of neurons and astrocytes in vivo, we measured the incorporation of radiolabel from [U-14C]glucose into both glutamate and glutamine in brain subregions at 1 h of reperfusion following occlusion of the middle cerebral artery for 2 or 3 h. Under the experimental conditions used, 14C-glutamate is mainly produced in neurons whereas 14C-glutamine is generated in astrocytes from 14C-glutamate of both neuronal and astrocytic origin. Radiolabel incorporation into both amino acids was greatly decreased. The change in 14C-glutamate accumulation provides strong evidence for substantial reductions in neuronal glucose metabolism. The resulting decrease in delivery of 14C-glutamate from the neurons to astrocytes was probably also the major contributor to the change in 14C-glutamine content. These alterations probably result in part from a marked depression of glycolytic activity in the neurons, as suggested by previous studies assessing deoxyglucose utilization. Alterations in 14C-glucose metabolism were not restricted to tissue that would subsequently become infarcted. Thus, these changes did not inevitably lead to death of the affected cells. The ATP : ADP ratio and phosphocreatine content were essentially preserved during recirculation following 2 h of ischemia and showed at most only moderate losses in some subregions following 3 h of ischemia. This retention of energy reserves despite the decreases in 14C-glucose metabolism in neurons suggests that energy needs were substantially reduced in the post-ischemic brain. Marked increases in tissue lactate accumulation during recirculation, particularly following 3 h of ischemia, provided evidence that impaired pyruvate oxidation probably also contributed to the altered 14C-glucose metabolism. These findings indicate the presence of complex changes in energy metabolism that are likely to greatly influence the responses of neurons and astrocytes to temporary focal ischemia. 相似文献
5.
目的:研究降痰宁神胶囊对血瘀性脑缺血大鼠脑组织物质代谢、能量代谢及抗氧化系统的影响。方法:采用连续注射地塞米松后结扎双侧颈总动脉来复制血瘀性脑缺血大鼠模型,通过观测大鼠脑组织代谢水平及抗氧化系统,考查降痰宁神胶囊抗脑缺血的作用及其作用机制。结果:3.56g/ks降痰宁神胶囊可减缓血瘀性脑缺血大鼠体重的下降,1.78-3.56g/妇降痰宁神胶囊能提高模型大鼠脑组织中葡萄糖、总氨基酸、ATP、Na+-K+.ATPnse的含量以及超氧化物歧化酶与过氧化氢酶的活性;降低脑组织中乳酸、丙二醛的含量以及脑组织含水量(P〈0.05,O.01)。结论:降痰宁神胶囊具有一定的抗脑缺血作用,调节脑组织物质与能量代谢、抗氧化是其抗脑缺血机制之 相似文献
6.
Roberto Federico Villa Antonella Gorini Federica Ferrari Siegfried Hoyer 《Neurochemistry international》2013
Stroke is a leading cause of death and disability, but most of the therapeutic approaches failed in clinical trials. The energy metabolism alterations, due to marked ATP decline, are strongly related to stroke and, at present, their physiopathological roles are not fully understood. Thus, the aim of this study was to evaluate the effects of aging on ischemia-induced changes in energy mitochondrial transduction and the consequences on overall brain energy metabolism in an in vivo experimental model of complete cerebral ischemia of 15 min duration and during post-ischemic recirculation after 1, 24, 48, 72 and 96 h, in 1 year “adult” and 2 year-old “aged” rats. 相似文献
7.
Bilateral lesion of the nucleus basalis with ibotenic acid infusions in young and aged rats results in the degeneration of cholinergic neurons which innervate the cortex. As expected, high-affinity uptake of choline was decreased in the frontal cortex subsequent to the lesion. Twenty one days after surgery there was a significantly decrease of the transport rate of GABA, glutamate and glycine in the frontal cortex of young rats, but those activities showed a recovery six months after lesion. On the contrary, 12-month old rats lesioned with the same experimental protocol showed no recovery of the transport rates in the frontal cortex. Uptake of choline, GABA, glutamate and glycine has also been studied in other areas of the brain, namely, hippocampus, olfactory bulb and cerebellum. The present results suggest that lesioning the nucleus basalis of rats led to a more effective and permanent impairment of some biochemical functions of the brain, when compared to young lesioned animals, and also suggest a functional relationship between the nucleus basalis and other areas of the brain. 相似文献
8.
Kazuo Ichihara Kiminobu Yamamoto Yasushi Abiko 《Molecular and cellular biochemistry》1993,119(1-2):133-141
Effects of iloprost, which is a stable prostacyclin analogue, on the ischemic myocardium were examined in the open-chest dog heart, in terms of biochemical parameters. Ischemia was initiated by ligating the left anterior descending coronary artery. When the coronary artery was ligated for 3 min, the levels or glycogen, fructose-1,6-diphosphate (FDP), adenosine triphosphate and creatinephosphate decreased, and the levels of glucose-6-phosphate (G6P), fructose-6-phosphate (F6P), lactate, adenosine diphosphate and adenosine monophosphate increased. During ischemia, therefore, energy charge potential was significantly decreased from 0.89±0.01 to 0.82±0.01, and ([G6P]+[F6P])/[FDP] and [lactate]/[pyruvate] ratios were significantly increased from 1.75±0.30 to 29.05±5.70 and 13±3 to 393±112, respectively. Iloprost (0.1, 0.3, or 1 g·kg–1) was injected intravenously 5 min before the onset of ischemia. Iloprost (0.1, 0.3, and 1 g·kg–1) reduced the ischemia-induced decrease in energy charge potential to 94, 74, and 86%, respectively, the increase in ([G6P]+[F6P]/[FDP] to 38, 29, 32%, respectively, and the increase in [lactate]/[pyruvate] to 67, 45, 65%, respectively. These results suggest that iloprost lessens the myocardial metabolic derangements produced by ischemia, and the most potent effect was obtained at the dose of 0.3 g·kg–1. 相似文献
9.
Sipola M Finckenberg P Vapaatalo H Pihlanto-Leppälä A Korhonen H Korpela R Nurminen ML 《Life sciences》2002,71(11):1245-1253
alpha-lactorphin (Tyr-Gly-Leu-Phe) lowers blood pressure in conscious adult SHR. This tetrapeptide is originally released from milk protein alpha-lactalbumin by enzymatic hydrolysis. In order to evaluate the antihypertensive mechanisms of alpha-lactorphin, the effects of the tetrapeptide on vascular function were investigated in (30-35 weeks old) spontaneously hypertensive rats (SHR) with established hypertension and age-matched normotensive Wistar-Kyoto (WKY) rats in vitro. In addition, we studied the vascular effects of another structurally related tetrapeptide, beta-lactorphin (Tyr-Leu-Leu-Phe), which originates from milk protein beta-lactoglobulin. Endothelium-dependent relaxation to acetylcholine (ACh) was reduced in mesenteric arterial preparations of SHR as compared to those of WKY. In SHR, the ACh-induced relaxation was augmented by alpha-lactorphin or beta-lactorphin. The role of nitric oxide (NO) is suggested, since this improvement was abolished by the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). Simultaneous potassium channel inhibitor tetraethylammonium (TEA) elicited no additional effect on the ACh-induced relaxation. The cyclooxygenase inhibitor diclofenac did not attenuate the augmented ACh relaxation induced by alpha-lactorphin or beta-lactorphin, suggesting that endothelial vasodilatory prostanoids were not involved in the effect of the tetrapeptides. Endothelium-independent relaxation to the NO donor sodium nitroprusside (SNP) was augmented in mesenteric arterial preparations of SHR by simultaneous beta-lactorphin. The tetrapeptides did not alter vascular responses in mesenteric arteries from WKY. In conclusion, both alpha-lactorphin and beta-lactorphin improved vascular relaxation in adult SHR in vitro. The beneficial effect of alpha-lactorphin was directed towards endothelial function, whereas beta-lactorphin also enhanced endothelium-independent relaxation. 相似文献
10.
Energy metabolism and selective neuronal vulnerability following global cerebral ischemia 总被引:9,自引:0,他引:9
Neil R. Sims 《Neurochemical research》1992,17(9):923-931
A short period of global ischemia results in the death of selected subpopulations of neurons. Some advances have been made in understanding events which might contribute to the selectivity of this damage but the cellular changes which culminate in neuronal death remain poorly defined. This overview examines the metabolic state of tissue in the post-ischemic period and the relationship of changes to the development of damage in areas containing ischemia-susceptible neurons. During early recirculation there is substantial recovery of ATP, phosphocreatine and related metabolites in all brain regions. However, this recovery does not signal restitution of normal energy metabolism as reductions of the oxidative metabolism of glucose are seen in many areas and may persist for several days. Furthermore, decreases in pyruvate-supported respiration develop in mitochondria from at least one ischemia-susceptible region at times coincident with the earliest histological evidence of ischemia-induced degeneration. These mitochondrial changes could simply be an early marker of irreversible damage but the available evidence is equally consistent with these contributing to the degenerative process and offering a potential site for therapeutic intervention.Submitted as an Overview article for the volume of Neurochemical Research in honor of Alan N. Davison. 相似文献
11.
Lactate and glucose as energy substrates during, and after, oxygen deprivation in rat hippocampal acute and cultured slices 总被引:5,自引:0,他引:5
Cater HL Chandratheva A Benham CD Morrison B Sundstrom LE 《Journal of neurochemistry》2003,87(6):1381-1390
The effects of raised brain lactate levels on neuronal survival following hypoxia or ischemia is still a source of controversy among basic and clinical scientists. We have sought to address this controversy by studying the effects of glucose and lactate on neuronal survival in acute and cultured hippocampal slices. Following a 1-h hypoxic episode, neuronal survival in cultured hippocampal slices was significantly higher if glucose was present in the medium compared with lactate. However, when the energy substrate during the hypoxic period was glucose and then switched to lactate during the normoxic recovery period, the level of cell damage in the CA1 region of organotypic cultures was significantly improved from 64.3 +/- 2.1 to 74.6 +/- 2.1% compared with cultures receiving glucose during and after hypoxia. Extracellular field potentials recorded from the CA1 region of acute slices were abolished during oxygen deprivation for 20 min, but recovered almost fully to baseline levels with either glucose (82.6 +/- 10.0%) or lactate present in the reperfusion medium (108.1 +/- 8.3%). These results suggest that lactate alone cannot support neuronal survival during oxygen deprivation, but a combination of glucose followed by lactate provides for better neuroprotection than either substrate alone. 相似文献
12.
大鼠局灶性脑缺血后一氧化氮合酶基因表达的变化 总被引:4,自引:0,他引:4
目的:观察大鼠局灶性脑缺血后3种类型一氧化氮合酶(NOS)mRNA表达的变化.方法:大鼠随机分为正常对照组、缺血后2、6、12、24 h组,以逆转录-聚合酶链反应(RT-PCR)法分别检测缺血脑组织NOS基因表达的变化.结果:脑缺血后eNOS、nNOSmRNA表达增强,分别于2、6 h达高峰;iNOS mRNA表达亦增高,但在缺血后12 h达高峰.结论:大鼠脑缺血早期eNOS和nNOS占主要地位,缺血后期iNOS占主要地位. 相似文献
13.
The effects of varying concentrations and types of volatile anesthetics on neurochemical sequelae of brain ischemia were evaluated in the rat. Rats were assigned to treatment defined by a 3×3 design (anesthetic type and dose) with 5 rats/cell. Each group received halothane, enflurane, or isoflurane 0.5, 1.0, or 2.0 MAC (minimal alevolar concentration). This was followed by preischemic plasma glucose sampling, 5 min hypotension (30 mmHg) and 5 min decapitation cerebral ischemia. Preischemia plasma glucose increased with increasing anesthetic concentration and was highest in the isoflurane groups, varying from a low (±SD) of 7.19±1.79 mol/ml in the 0.5 MAC halothane group to a high of 12.68±3.65 mol/ml in the 2.0 MAC isoflurane group. End-ischemic brain lactate correlated with preischemic plasma glucose (r=0.5, =0.5). We conclude that increasing concentration of volatile anesthesia with iv phenylephrine blood pressure support produces higher levels of plasma glucose and brain lactate with cerebral ischemia. 相似文献
14.
Pires PW Rogers CT McClain JL Garver HS Fink GD Dorrance AM 《American journal of physiology. Heart and circulatory physiology》2011,301(1):H87-H97
Matrix metalloproteases (MMPs) are a family of zinc peptidases involved in extracellular matrix turnover. There is evidence that increased MMP activity is involved in remodeling of resistance vessels in chronic hypertension. Thus we hypothesized that inhibition of MMP activity with doxycycline (DOX) would attenuate vascular remodeling. Six-week-old male stroke-prone spontaneously hypertensive rats (SHRSP) were treated with DOX (50 mg·kg(-1)·day(-1) in the drinking water) for 6 wk. Untreated SHRSP were controls. Blood pressure was measured by telemetry during the last week. Middle cerebral artery (MCA) and mesenteric resistance artery (MRA) passive structures were assessed by pressure myography. MMP-2 expression in aortas was measured by Western blot. All results are means ± SE. DOX caused a small increase in mean arterial pressure (SHRSP, 154 ± 1; SHRSP + DOX, 159 ± 3 mmHg; P < 0.001). Active MMP-2 expression was reduced in aorta from SHRSP + DOX (0.21 ± 0.06 vs. 0.49 ± 0.13 arbitrary units; P < 0.05). In the MCA, at 80 mmHg, DOX treatment increased the lumen (273.2 ± 4.7 vs. 238.3 ± 6.3 μm; P < 0.05) and the outer diameter (321 ± 5.3 vs. 290 ± 7.6 μm; P < 0.05) and reduced the wall-to-lumen ratio (0.09 ± 0.002 vs. 0.11 ± 0.003; P < 0.05). Damage after transient cerebral ischemia (transient MCA occlusion) was reduced in SHRSP + DOX (20.7 ± 4 vs. 45.5 ± 5% of hemisphere infarcted; P < 0.05). In the MRA, at 90 mmHg DOX, reduced wall thickness (29 ± 1 vs. 22 ± 1 μm; P < 0.001) and wall-to-lumen ratio (0.08 ± 0.004 vs. 0.11 ± 0.008; P < 0.05) without changing lumen diameter. These results suggest that MMPs are involved in hypertensive vascular remodeling in both the peripheral and cerebral vasculature and that DOX reduced brain damage after cerebral ischemia. 相似文献
15.
V A Sorokoumov Iu Ia Kisliakov E L Pugacheva E R Barantsevich V A Grantyn' 《Biulleten' eksperimental'no? biologii i meditsiny》1990,109(5):512-514
The age changes in the activity of some enzymes in neurons and in microvessels, revealed histochemically, as well as the volume of microvessels in spontaneously hypertensive (SH) rats differ from these changes in the controls. At the age of 3 months the activity of these enzymes and the number of active microvessels in SH rats increased. At the age of 6 months the activity of studied enzymes in SH rats decreased, while the number of active microvessels remained constant. The correlation between the morpho-functional characteristics of brain tissue in SH rats and its greater ischemic vulnerability is assumed. 相似文献
16.
Hiroaki Ooboshi Hiroshi Yao Takashi Matsumoto Makoto Hirano Hideyuki Uchimura Seizo Sadoshima Masatoshi Fujishima 《Neurochemical research》1991,16(1):51-56
Excitatory (glutamate, aspartate) or inhibitory amino acids (-aminobutyric acid: GABA, taurine) and glutamine contents were examined in acutely induced cerebral ischemia in spontaneously hypertensive rats. At 20 min ischemia most of these amino acids remained unchanged, but glutamine significantly decreased by 14% in the CA3 hippocampal subfield. At 60 min ischemia glutamate significantly decreased by 14% in the CA3, aspartate by 17–26% in the CA3, cingulate cortex, septum and striatum. In contrast, GABA significantly increased by 48–106% in the cortices (frontal, parietal and cingulate), striatum and nucleus accumbens, but insignificantly in hippocampal subrïelds. Likewise, taurine increased in the parietal cortex and nucleus accumbens. Glutamine showed heterogeneous changes (increase in the nucleus accumbens and decrease in the CA3). Amino acid levels change during ischemia, but their changes are varied in each area, implying that different reaction of amino acids may explain the selective vulnerability to cerebral ischemia. 相似文献
17.
Hendrickson Steven C. St. Louis James D. Lowe James E. Abdel-aleem Salah 《Molecular and cellular biochemistry》1997,166(1-2):85-94
Long chain free fatty acids (FFA) are the preferred metabolic substrates of myocardium under aerobic conditions. However, under ischemic conditions long chain FFA have been shown to be harmful both clinically and experimentally. Serum levels of free fatty acids frequently are elevated in patients with myocardial ischemia. The proposed mechanisms of the detrimental effects of free fatty acids include: (1) accumulation of toxic intermediates of fatty acid metabolism, such as long chain acyl-CoA thioesters and long chain acylcarnitines, (2) inhibition of glucose utilization, particularly glycolysis, during ischemia and/or reperfusion, and (3) uncoupling of oxidative metabolism from electron transfer. The relative importance of these mechanisms remains controversial. The primary site of FFA-induced injury appears to be the sarcolemmal and intracellular membranes and their associated enzymes. Inhibitors of free fatty acid metabolism have been shown experimentally to decrease the size of myocardial infarction and lessen postischemic cardiac dysfunction in animal models of regional and global ischemia. The mechanism by which FFA inhibitors improve cardiac function in the postischemic heart is controversial. Whether the effects are dependent on decreased levels of long chain intermediates and/or enhancement of glucose utilization is under investigation. Manipulation of myocardial fatty acid metabolism may prove beneficial in the treatment of myocardial ischemia, particularly during situations of controlled ischemia and reperfusion, such as percutaneous transluminal coronary angioplasty and coronary artery bypass grafting. (Mol Cell Biochem 166: 85-94, 1997) 相似文献
18.
A very large body of evidence from in vivo studies has been accumulated on a link between the change of energy and cell survival/apoptosis. Using an in vitro ischemia model, we have previously shown that ischemia could induce apoptosis in astrocytes. In this study, we utilized the same in vitro model to investigate changes in ATP and ADP levels in cultured astrocytes and attempted to demonstrate an energy-cell death linkage. Astrocytes remained unaltered after 2 hr of ischemia but were moderately or severely damaged after 4 or 6-8 hr, respectively. The astrocytes that survived various lengths of in vitro ischemic incubation retained their ability to produce ATP after ischemia. Both ATP and ADP levels were increased in astrocytes that remained alive under in vitro ischemia for over 6 hr. The largest decline in the percent of viable astrocytes during ischemia corresponded well to the reduction in ATP and ADP levels in these cultures. 相似文献
19.
Hypertension is a systemic disorder affecting numerous physiological processes throughout the body. As non-alcoholic fatty liver disorder (NAFLD) is a common comorbidity of hypertension in humans, we hypothesized that molecular hepatic physiology would be altered in a model of genetic hypertension. Despite the broad use of the spontaneously hypertensive rat (SHR) model, little is known regarding how hypertension influences hepatic function under basal conditions. In order to determine whether hypertension induces changes in the hepatic protein expression suggestive of early stages of NAFLD, we compared the whole tissue proteome of livers from SHR and Wistar Kyoto (WKY) 16 week old rats using 2DGE and MALDI-TOF MS. Fifteen proteins were identified that display different levels of expression between the SHR and WKY livers: 50% of proteins have mitochondrial or anti-oxidant functions while 20% are involved in lipid metabolism. Quininoid dihydropterin reductase, sulfite oxidase, and glutathione-S-transferase mu 1 were all identified as either undergoing a difference in post-translation modification or a difference in protein abundance in SHR compared to WKY livers. As oxidative stress is a well described component of both NAFLD and hypertension in SHR, the identification of novel changes in protein expression provides possible mechanisms connecting these two pathologies in humans. 相似文献
20.
Spatio-temporal properties of 5-lipoxygenase expression and activation in the brain after focal cerebral ischemia in rats 总被引:5,自引:0,他引:5
Zhou Y Wei EQ Fang SH Chu LS Wang ML Zhang WP Yu GL Ye YL Lin SC Chen Z 《Life sciences》2006,79(17):1645-1656
The role of 5-lipoxygenase (5-LOX) in brain injury after cerebral ischemia has been reported; however, the spatio-temporal properties of 5-LOX expression and the enzymatic activation are unclear. To determine these properties, we observed post-ischemic 5-LOX changes from 3 h to 14 days after reperfusion in rats with transient focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion. We found that the expression of 5-LOX, both mRNA and protein, was increased in the ischemic core 12-24 h after reperfusion, and in the boundary zone adjacent to the ischemic core 7-14 days after reperfusion. The increased 5-LOX was primarily localized in the neurons in the ischemic core at 24 h, but in the proliferated astrocytes in the boundary zone 14 days after reperfusion. As 5-LOX metabolites, the level of cysteinyl-leukotrienes in the ischemic brain was substantially increased 3 h to 24 h, near control at 3 days, and moderately increased again 7 days after reperfusion; whereas the level of LTB(4) was increased mildly 3 h but substantially 7-14 days after reperfusion. Thus, we conclude that 5-LOX expression and the enzymatic activity are increased after focal cerebral ischemia, and spatio-temporally involved in neuron injury in the acute phase and astrocyte proliferation in the late phase. 相似文献