首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of apamin, the principal neurotoxin in bee venom, has been accomplished by the solid phase method on a benzhydrylamine resin, 2-Phenylisopropyloxycarbonyl amino acids were used throughout the synthesis except for the C-terminal histidine. Improved yields in the coupling steps in the N-terminal part of the molecule were obtained by coupling each amino acid both in dichloromethane and dimethylformamide. The use of acetamidomethyl as an S-protecting group for cysteine made it possible to isolate and purify the linear peptide. The deblocked and oxidized peptide was fractionated by ion-exchange chromatography (Bio-Rex 70) to obtain a highly purified apamin with full biological activity and with the same physical and chemical properties as the natural peptide. Circular dichroism (CD) spectra of the synthetic and natural apamin were identical.  相似文献   

2.
Small conductance calcium-activated potassium channels (SK, K(Ca)) are a family of voltage-independent K+ channels with a distinct physiology and pharmacology. The bee venom toxin apamin inhibits exclusively the three cloned SK channel subtypes (SK1, SK2, and SK3) with different affinity, highest for SK2, lowest for SK1, and intermediate for SK3 channels. The high selectivity of apamin made it a valuable tool to study the molecular makeup and function of native SK channels. Three amino acids located in the outer vestibule of the pore are of particular importance for the different apamin sensitivities of SK channels. Chimeric SK1 channels, enabling the homomeric expression of the rat SK1 (rSK1) subunit and containing the core domain (S1-S6) of rSK1, are apamin-insensitive. By contrast, channels formed by the human orthologue human SK1 (hSK1) are sensitive to apamin. This finding hinted at the involvement of regions beyond the pore as determinants of apamin sensitivity, because hSK1 and rSK1 have an identical amino acid sequence in the pore region. Here we investigated which parts of the channels outside the pore region are important for apamin sensitivity by constructing chimeras between apamin-insensitive and -sensitive SK channel subunits and by introducing point mutations. We demonstrate that a single amino acid situated in the extracellular loop between the transmembrane segments S3 and S4 has a major impact on apamin sensitivity. Our findings enabled us to convert the hSK1 channel into a channel that was as sensitive for apamin as SK2, the SK channel with the highest sensitivity.  相似文献   

3.
Apamin, an 18 amino acid peptide with two disulfide bonds, elicits specific T cell proliferative responses in H-2d and H-2b mouse strains. We evaluated the processing requirement of this compact peptide by accessory cells for presentation to apamin-reactive T hybridoma cells (THC) by analyzing the IL-2 responses of 16 THC from apamin-primed BALB/c or C57BL/6 mice, to various forms of either native or chemically synthesized apamin analogs. These included: unfolded peptides (whose four sulfhydryl groups were blocked by acetamidomethyl residues), N-and/or C-truncated peptides, and an analog with a single amino acid substitution at position 10. Assessment of the Ag-specific THC responses in the presence of either live or formaldehyde-prefixed APC indicated the following: 1) all THC stringently required Ag processing; 2) in 8 of 16 cases, the simple unfolding of apamin was sufficient to eliminate the need for Ag processing, or even induced increased THC IL-2 responses (other cells required further antigenic alterations in addition to unfolding, or rare processing steps dependent on the integrity of the two disulfide bonds); and 3) for most THC, the Leu10 and the N terminus arm of apamin were shown to be critical for expression of the epitopes involved in T cell recognition. These data indicate that apamin, a natural peptide having an appropriate size for T cell triggering, acquires its antigenic conformation after a processing by APC which primarily involves an alteration of a disulfide bond-dependent peptide folding.  相似文献   

4.
The solution conformations of a hybrid sequence peptide related to the bee venom peptide apamin have been determined using two-dimensional 1H-nmr. Apamin is an 18 amino acid peptide containing a C-terminal helix that is stabilized by two disulfide bonds. The deletion of one residue (K4) of the N-terminal “scaffold” region of the apamin sequence results in a helical peptide, but with a change in the pairing of cysteines to form the disulfide cross links. The new disulfide arrangement is analogous to that of the vasoconstrictor peptide endothelin. Two sets of nmr resonances were observed for the apamin-deletion (AD) peptide, due to cis-trans isomerism at the A4-P5 peptide bond. The cis isomer of the AD peptide contains a tight turn in residues 3–6, which is required for formation of the α-helix in residues 7–15. Nuclear Overhauser effects observed for the trans AD peptide are not consistent with any single unique fold, indicating the presence of conformational averaging when the peptide adopts the trans form. Distance geometry calculations on the cis AD peptide reveal an α-helical structure that appears to be more like that of apamin than the crystal structure of human endothelin, despite the reversal of the disulfide pattern in the AD peptide from that of apamin to that of endothelin.© 1997 John Wiley & Sons, Inc. Biopoly 41 : 451–460, 1997  相似文献   

5.
The sequence of apamin, an 18 residue bee venom toxin, encloses all the information required for the correct disulfide-coupled folding into the cystine-stabilized alpha-helical motif. Three apamin analogs, each containing a pair of selenocysteine residues replacing the related cysteines, were synthesized to mimic the three possible apamin isomers with two crossed, parallel, or consecutive disulfides, respectively. Refolding experiments clearly revealed that the redox potential of selenocysteine prevails over the sequence encoded structural information for proper folding of apamin. Thus, selenocysteine can be used as a new device to generate productive and nonproductive folding intermediates of peptides and proteins. In fact, disulfides are selectively reduced in presence of the diselenide and the conformational features derived from these intermediates as well as from the three-dimensional (3D) structures of the selenocysteine-containing analogs with their nonnatural networks of diselenide/disulfide bridges allowed to gain further insight into the subtle driving forces for the correct folding of apamin that mainly derive from local conformational preferences.  相似文献   

6.
Apamin is a single-chain, disulfide-bonded, 18-amino acid peptide that elicits mouse T cell responses when presented by cells expressing syngeneic Ad or Ab class II MHC molecules. We previously showed that both the unfolding of this peptide by APC and the integrity of its N terminus segment were required for efficient apamin T cell recognition. To seek further information on the sites through which this peptide interacts with Ia and/or TCR, we used a panel of Ad- or Ab-restricted, apamin-specific THC to probe the antigenicity of a series of synthetic apamin analogs. These included peptides either truncated at the N terminus, or substituted by Ala at position 2, 4, 6, 7, 8, or 10. Analysis of THC responses to apamin analogs and use of the latter in competition assays for peptide presentation revealed the following: 1) optimal apamin T cell recognition critically involved Lys4, Ala5, Pro6, Glu7, and Leu10. The role of these residues in either "Ia or TCR binding regions" was found to depend upon the restricting Ia molecules at play. Thus, Lys4, Glu7, and Leu10 were TCR-binding residues in both Ad- and Ab-apamin complexes, whereas Lys4 participated in apamin/Ab but not, or to a marginal extent, in apamin/Ad interaction. Furthermore, Pro6 was associated either with an Ia contact region or a TCR interaction site when apamin was presented by Ab or Ad molecules, respectively. Unfolded apamin and the unrelated chicken OVA323-339 peptide were found to bind to the same, or closely related site(s) of Ad, as shown by their ability to compete reciprocally for recognition by appropriate Ad-restricted THC. Four distinct TCR V beta genes (V beta 2, V beta 4, V beta 6, and V beta 8) were found to be used in our panel of 16 apamin-specific THC. These data indicate that apamin interacts with Ad or TCR through a motif resembling other beta-sheeted, Ad-binding sequences; however, based on the spacing of the critical residues (i.e., 4, 7, and 10), the possibility exists that apamin processing permits the folding of this sequence into an alpha-helix.  相似文献   

7.
Three novel peptide inhibitors of the SKCa channels were purified to homogeneity from the venom of the scorpion Androctonus mauretanicus mauretanicus using one step of RP-HPLC and competition assays with [125I]apamin to rat brain synaptosomes. POi, PO2 and PO5 have K0.5 of 100,100 and 0.02 nM, respectively, for the apamin binding site. The sequence of PO5 was established and compared to that of other scorpion toxins active on K+ channels: it contains 31 residues and has a free carboxyl end. It shares sequence similarity with apamin and leiurotoxin I.  相似文献   

8.
By replacing two cysteine residues in apamin with selenocysteine, the three possible isomers related to the side-chain connectivities of a bis-cystinyl-peptide were synthesized in regioselective manner exploiting the low redox potential of the diselenide bond. Nuclear magnetic resonance conformational analysis of monoselenocystine analogue apamin with the natural diselenide/disulfide network confirmed the highly isomorphous character of the sulfur replacement with selenium despite its slightly larger atomic radius and increased bond lengths. The comparative conformational analysis of the apamin analogues containing the non-natural side-chain links with wild type apamin clearly revealed retention of the main structural fold and thus the high propensity of these small molecules to adopt the secondary structure elements present in natural apamin. These findings offered interesting hints for a better understanding of the oxidative refolding pathway of the bis-cystinyl peptide that leads exclusively to the correct natural isomer.  相似文献   

9.
ACh-induced endothelium-dependent relaxation in rabbit small mesenteric arteries is resistant to N-nitro-L-arginine (L-NA) and indomethacin but sensitive to high K+, indicating the relaxations are mediated by endothelium-derived hyperpolarizing factors (EDHFs). The identity of the EDHFs in this vascular bed remains undefined. Small mesenteric arteries pretreated with L-NA and indomethacin were contracted with phenylephrine. ACh (10(-10) to 10(-6) M) caused concentration-dependent relaxations that were shifted to the right by lipoxygenase inhibition and the Ca(2+)-activated K+ channel inhibitors apamin (100 nM) or charybdotoxin (100 nM) and eliminated by the combination of apamin plus charybdotoxin. Relaxations to ACh were also blocked by a combination of barium (200 microM) and apamin but not barium plus charybdotoxin. Addition of K+ (10.9 mM final concentration) to the preconstricted arteries elicited small relaxations. K+ addition before ACh restored the charybdotoxin-sensitive component of relaxations to ACh. K+ (10.9 mM) also relaxed endothelium-denuded arteries, and the relaxations were inhibited by barium but not by charybdotoxin and apamin. With the use of whole cell patch-clamp analysis, ACh (10(-7) M) stimulated voltage-dependent outward K+ current from endothelial cells, which was inhibited by charybdotoxin, indicating K+ efflux. Arachidonic acid (10(-7) to 10(-4) M) induced concentration-related relaxations that were inhibited by apamin but not by charybdotoxin and barium. Addition of arachidonic acid after K+ (10.9 mM) resulted in more potent relaxations to arachidonic acid compared with control without K+ (5.9 mM). These findings suggest that, in rabbit mesenteric arteries, ACh-induced, L-NA- and indomethacin-resistant relaxation is mediated by endothelial cell K+ efflux and arachidonic acid metabolites, and a synergism exists between these two separate mechanisms.  相似文献   

10.
The structural features of apamin, a natural octadecapeptide from bee venom, enabling binding to its receptor and the expression of toxicity in mice, have been delineated by studying the effects on binding and toxicity of chemical modifications and amino acid substitutions in synthetic analogues. The results obtained indicate that the only hydrophobic residue, leucine at position 10, can be changed to alanine without a significant decrease in the specific activity. The need for a correct conformation has been established and also the importance of Gln-17 and the side chains of Arg-13 and Arg-14 (besides the charge effects). The interaction of apamin with its receptor, a calcium-activated potassium channel, is thus mediated by a precise topology around these three residues. Due to the ability to detect very low specific activities for some of the analogues, it has been shown that, individually, none of these interactions constitute an essential criteria for binding per se, but that their presence is necessary for the high specific activity of the toxin.  相似文献   

11.
Chemical modifications of scyllatoxin (leiurustoxin I) have shown that two arginines in the sequence, Arg6 and Arg13, are essential both for binding to the Ca(2+)-activated K+ channel protein and for the functional effect of the toxin. His31 is important both for the binding activity of the toxin and for the induction of contractions on taenia coli. However, although its iodination drastically decreases the toxin activity, it does not abolish it. Chemical modification of lysine residues or of Glu27 does not significantly alter toxin binding, but it drastically decreases potency with respect to contraction of taenia coli. The same observation has been made after chemical modification of the lysine residues. The brain distribution of scyllatoxin binding sites has been analyzed by quantitative autoradiographic analysis. It indicates that apamin (a bee venom toxin) binding sites are colocalized with scyllatoxin binding sites. The results are consonant with the presence of apamin/scyllatoxin binding sites associated with Ca(2+)-activated K+ channels. High-affinity binding sites for apamin can be associated with very-high-affinity (less than 70 pM), high-affinity (approximately 100-500 pM), or moderate-affinity (greater than 800 pM) binding sites for scyllatoxin.  相似文献   

12.
The receptor for the bee venom derived neurotoxin, apamin, is widely believed to be an integral component of the small conductance calcium-activated potassium channel in many excitable cells. By affinity chromatography on immobilized apamin, a 78 kD apamin binding protein of the bovine brain synaptosomes was isolated. Antibodies were elicited against this protein and used to clone a cDNA from a porcine vascular smooth muscle expression library. This gene (Kcal 1.8) codes for a 438 amino protein with four potential transmembrane domains, one putative calcium binding site, a protein kinase C phosphorylation site, and a leucine zipper motif. Kcal 1.8 encoded protein has no significant sequence homologies with any known ion channels or receptors. Kcal 1.8 is likely to encode a protein associated with the small conductance calcium-activated potassium channel in vascular smooth muscle.  相似文献   

13.
Undifferentiated PC12 cell produce high levels of apamin receptors (measured with 125I-apamin) after 7 days in culture. These levels are at least 50 times higher than those found in other cellular types which are also known to have apamin receptors and apamin-sensitive Ca2+-activated K+ channels in their membranes. Treatment of undifferentiated PC12 cells with nerve growth factor maintains these cells in a state having a low level (10 times less after 7 days of culture) of apamin receptors. Ca2+ injection into PC12 cells with the calcium ionophore A23187 has been used to monitor the activity of the Ca2+-activated K+ channel following 86Rb+ efflux. A large component of this Ca2+-activated 86Rb+ efflux is inhibited by apamin. Half-maximum inhibition by apamin of both 86Rb+ efflux and 125I-apamin binding was observed at 240 pM apamin. Another component of 86Rb+ efflux is due to another type of Ca2+-activated K+ channel which is resistant to apamin and sensitive to tetraethylammonium. The Ca2+ channel activator Bay K8644 also triggers an apamin-sensitive Ca2+-dependent 86Rb+ efflux. Bay K8644 has been used to analyze the internal Ca2+ concentration dependence of the apamin-sensitive channel activity. Under normal conditions, the internal Ca2+ concentration is 109 +/- 17 nM, and the apamin-sensitive channel is not activated. The channel is fully activated at an internal Ca2+ concentration of 320 +/- 20 nM.  相似文献   

14.
Apamin is an 18-residue bee venom peptide with the sequence CNCKAPETALCARRCQQH-amide and contains 2 disulfide bonds connecting C-1 to C-11 and C-3 to C-15. In the folding of reduced, unfolded apamin to native apamin with two disulfide bonds, the one-disulfide folding intermediate states are not populated to significant levels. To study the properties of the one-disulfide intermediates, we have synthesized two peptide models to mimic the one-disulfide intermediates, Apa-1 and Apa-2, in which two cysteines in the sequence have been replaced by alanines. These peptides can form only one of the native disulfide bonds, C-1 to C-11 in the case of Apa-1 and C-3 to C-15 in the case of Apa-2. The stabilities of these disulfide bonds have been measured as a function of pH, concentration of urea, and temperature, in order to understand which contributions stabilize the disulfide-bonded structures. Using oxidized and reduced glutathione, the equilibrium constants for forming the disulfide bonds at 25 degrees C and pH 7.0 are 0.018 M for Apa-1 and 0.033 M for Apa-2 and show little dependence on pH or temperature. Both disulfide bonds are destabilized slightly (by approximately a factor of 2) between 0 and 8 M urea. Circular dichroism spectra indicate that although both Apa-1 and Apa-2 exhibit some structure, Apa-2 exhibits more than Apa-1. The results suggest that in the folding of apamin, the one-disulfide intermediate containing the C-3 to C-15 disulfide bond, as in Apa-2, is favored slightly. Secondary structure provides modest stabilization to this intermediate.  相似文献   

15.
The allergenic activities of four purified components of honeybee venom were studied by using histamine release from leukocytes of bee sting-allergic patients. The components studied were hyaluronidase, phospholipase A2, melittin and apamin with molecular weights, respectively, of about 50,000, 15,800, 2840 and 2038 d. In six of the seven patients studied, hyaluronidase and phospholipase were, respectively, on the average about two and eight times more active by weight than the venom. The situation was reversed in one patient in that hyaluronidase and phospholipase A2 were, respectively, 90 and 0.5 times more active than the venom. With this single exception, hyaluronidase and phospholipase were about equally active on a molar basis as allergens. Melittin was on the average about one-tenth as active as the venom, and apamin was inactive as an allergen.Chemical modifications of phospholipase A2 were carried out. Succinylation of eight of its eleven amino groups yielded a derivative that retained 4% of the enzymic activity of the native enzyme. Reduction and carboxymethylation of its four disulfide bonds or cyanogen bromide cleavage of its three methionyl bonds yielded enzymatically inactive derivatives. These derivatives showed varying decreases of allergenic activities when compared to the native enzyme. The results indicate that the antigenic determinants of phospholipase depend on the charge, the amino acid sequence and the conformation of the molecule.  相似文献   

16.
The venom of the North African scorpion Androctonus mauretanicus mauretanicus possesses numerous highly active neurotoxins that specifically bind to various ion channels. One of these, P05, has been found to bind specifically to calcium-activated potassium channels and also to compete with apamin, a toxin extracted from bee venom. Besides the highly potent ones, several of these peptides (including that of P01) have been purified and been found to possess only a very weak, although significant, activity in competition with apamin. The amino acid sequence of P01 shows that it is shorter than P05 by two residues. This deletion occurs within an α-helix stretch (residues 5–12). This α-helix has been shown to be involved in the interaction of P05 with its receptor via two arginine residues. These two arginines are absent in the P01 sequence. Furthermore, a proline residue in position 7 of the P01 sequence may act as an α-helix breaker. We have determined the solution structure of P01 by conventional two-dimensional 1H nuclear magnetic resonance and show that 1) the proline residue does not disturb the α-helix running from residues 5 to 12; 2) the two arginines are topologically replaced by two acidic residues, which explains the drop in activity; 3) the residual binding activity may be due to the histidine residue in position 9; and 4) the overall secondary structure is conserved, i.e., an α-helix running from residues 5 to 12, two antiparallel stretches of β-sheet (residues 15–20 and 23–27) connected by a type I′ β-turn, and three disulfide bridges connecting the α-helix to the β-sheet.  相似文献   

17.
Small conductance Ca2+-activated K+ (SK) channels have been cloned from mammalian brain, but little is known about the molecular characteristics of SK channels in nonexcitable tissues. Here, we report the isolation from rat liver of an isoform of SK3. The sequence of the rat liver isoform differs from rat brain SK3 in five amino acid residues in the NH3 terminus, where it more closely resembles human brain SK3. SK3 immunoreactivity was detectable in hepatocytes in rat liver and in HTC rat hepatoma cells. Human embryonic kidney (HEK-293) cells transfected with liver SK3 expressed 10 pS K+ channels that were Ca2+ dependent (EC(50) 630 nM) and were blocked by the SK channel inhibitor apamin (IC(50) 0.6 nM); whole cell SK3 currents inactivated at membrane potentials more positive than -40 mV. Notably, the Ca2+ dependence, apamin sensitivity, and voltage-dependent inactivation of SK3 are strikingly similar to the properties of hepatocellular and biliary epithelial SK channels evoked by metabolic stress. These observations raise the possibility that SK3 channels influence membrane K+ permeability in hepatobiliary cells during liver injury.  相似文献   

18.
The preparation and purification of an active monoiodo derivative of apamin is described. Radiolabeled monoiodoapamin (2000 Ci/mmol) binds specifically to rat brain synaptosomes at 0 degrees C and pH 7.5 with a second order rate constant of association (ka = 2.6 x 10(7) M-1 s-1) and a first order rate constant of dissociation (kd = 3.8 x 10(-4) s-1). The maximal binding capacity is 12.5 fmol/mg of protein and the dissociation constant is 15-25 pM for the monoiodo derivative and 10 pM for the native toxin. The apamin receptor is destroyed by proteases suggesting that it is of a proteic nature. Neurotensin and its COOH-terminal partial sequences are the only molecules unrelated to apamin that are able to displace monoiodoapamin from its receptor at low concentrations. Half-displacement occurs at 170 nM neurotensin. This property is due to the presence in the COOH-terminal sequence of neurotensin of two contiguous arginine residues, a structure analogous to that of the apamin active site. The binding of monoiodoapamin to its receptor is sensitive to cations. Increasing K+ or Rb+ concentrations from 10 microM to 5 mM selectively enhances the binding by a factor of 1.8. Increasing the concentration of any cation from 1 to 100 mM completely inhibits iodoapamin binding. Both effects are due to a cation-induced modulation of the affinity of monoidoapamin for its receptor without any change of the maximal toxin binding capacity of synaptosomes. Guanidinium and molecules containing a guanidinium group are better inhibitors of iodoapamin binding than other inorganic cations or positively charged organic molecules.  相似文献   

19.
Apamin is a neurotoxic octadecapeptide from bee venom, which has been shown to inhibit the non-adrenergic, non-cholinergic inhibitory innervation of the smooth muscle of the gut. Since vasoactive intestinal polypeptide (VIP) has been proposed as a possible inhibitory neurotransmitter, the effect of apamin on the receptor binding of 125I-VIP was studied using the following assays: (1) isolated synaptosomes from rat cerebral cortex, (2) crude plasma membranes from hog uterine smooth muscle, and (3) purified plasma membranes and isolated hepatocytes from hog liver. Apamin inhibited the receptor-bound 125I-VIP on membranes from brain or myometrium, although the binding affinity was 100-1000 times lower than for VIP. The displacement curves for VIP and apamin were parallel suggesting that apamin interacts with both the low and high affinity VIP receptors. In membranes and cells from liver, apamin was unable to displace receptor-bound 125I-VIP in concentrations up to 50 mumol/l. The findings suggest that the VIP receptors in liver are different from those in the brain cortex and myometrium.  相似文献   

20.
The calculation of the complete spatial structure of the bee venom peptide neurotoxin apamin has been carried out by means of a method elaborated earlier. It is based on the joint utilization of the molecular mechanics algorithms and NMR spectroscopy data. It was established that the molecule backbone conformation in solution may be represented as the combination of the beta-turn III (residues 2-5) and alpha-helical segment (9-18) both separated by the non-standard bend IV (5-8). The most probable system of the intramolecular hydrogen bonds in the apamin polypeptide backbone was proposed. Certain amino acid residues have been shown to be characterized by the lack of strict determination of the conformations of their side chains which may be realized in a few states providing approximately equal stabilization of the same form of the main chain. The conformational parameters of the proposed apamin structural model are appropriate to the NMR spectroscopy data derived from the literature and used in the calculations and are not contradictory to other experimental information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号