首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of the antigen binding fragment of mAb S25-26, determined to 1.95 Å resolution in complex with the Chlamydiaceae family-specific trisaccharide antigen Kdo(2→8)Kdo(2→4)Kdo (Kdo = 3-deoxy-α-d-manno-oct-2-ulopyranosonic acid), displays a germ-line-coded paratope that differs significantly from previously characterized Chlamydiaceae-specific mAbs despite being raised against the identical immunogen. Unlike the terminal Kdo recognition pocket that promotes cross-reactivity in S25-2-type antibodies, S25-26 and the closely related S25-23 utilize a groove composed of germ-line residues to recognize the entire trisaccharide antigen and so confer strict specificity. Interest in S25-23 was sparked by its rare high μm affinity and strict specificity for the family-specific trisaccharide antigen; however, only the related antibody S25-26 proved amenable to crystallization. The structures of three unliganded forms of S25-26 have a labile complementary-determining region H3 adjacent to significant glycosylation of the variable heavy chain on asparagine 85 in Framework Region 3. Analysis of the glycan reveals a heterogeneous mixture with a common root structure that contains an unusually high number of terminal αGal-Gal moieties. One of the few reported structures of glycosylated mAbs containing these epitopes is the therapeutic antibody Cetuximab; however, unlike Cetuximab, one of the unliganded structures in S25-26 shows significant order in the glycan with appropriate electron density for nine residues. The elucidation of the three-dimensional structure of an αGal-containing N-linked glycan on a mAb variable heavy chain has potential clinical interest, as it has been implicated in allergic response in patients receiving therapeutic antibodies.  相似文献   

2.
Maaheimo H  Kosma P  Brade L  Brade H  Peters T 《Biochemistry》2000,39(42):12778-12788
A NMR study of the binding of the synthetic disaccharides alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl 1 (Kdo, 3-deoxy-D-manno-oct-2-ulopyranosonic acid) and alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl 2, representing partial structures of the lipopolysaccharide epitope of the intracellular bacteria Chlamydia, to corresponding monoclonal antibodies (mAbs) S23-24, S25-39, and S25-2 is presented. The conformations of 1 bound to mAbs S25-39 and of 2 bound to mAbs S23-24 and S25-39 were analyzed by employing transfer-NOESY (trNOESY) and QUIET-trNOESY experiments. A quantitative analysis of QUIET-trNOESY buildup curves clearly showed that S25-39 recognized a conformation of 1 that was similar to the global energy minimum of 1, and significantly deviated from the conformation of 1 bound to mAb S25-2. For disaccharide 2, only a qualitative analysis was possible because of severe spectral overlap. Nevertheless, the analysis showed that all mAbs most likely bound to only one conformational family of 2. Saturation transfer difference (STD) NMR experiments were then employed to analyze the binding epitopes of the disaccharide ligands 1 and 2 when binding to mAbs S23-24, S25-39, and S25-2. It was found that the nonreducing pyranose unit was the major binding epitope, irrespective of the mAb and the disaccharide that were employed. Individual differences were related to the engagement of other portions of the disaccharide ligands.  相似文献   

3.
Abstract An artificial glycoconjugate containing, as a ligand, the deacylated carbohydrate backbone of a recombinant Chlamydia -specific lipopolysaccharide was used as a solid-phase antigen in ELISA to measure antibodies against chlamydial LPS. The specificity and reproducibility of the assay was shown by using a panel of prototype monoclonal antibodies representing the spectrum of antibodies also occuring in patient sera. These mAbs recognized Chlamydia -specific epitopes [ α 2→8-linked disaccharide of 3-deoxy- d - manno -octulosonic acid (Kdo) or the trisaccharide α Kdo-(2→8)-→Kdo] or those shared between chlamydial and Re-type LPS ( α Kdo, α →4-linked Kdo disacccharide). The assay was used to measure IgG, IgA and IgM antibodies against chlamydial LPS in patients with genital or respiratory tract infections. In comparison to the results obtained with sera from blood donors, it became evident that both types of infection result in significant changes in the profile of LPS antibodies.  相似文献   

4.
O Holst  L Brade  P Kosma    H Brade 《Journal of bacteriology》1991,173(6):1862-1866
The human bacterial pathogens Chlamydia spp. possess a genus-specific lipopolysaccharide as a major surface antigen, the structure of which has been determined by analytical chemistry as Kdop alpha 2-8-Kdop alpha 2-4-Kdop alpha 2-6GlcNp beta 1-6-GlcNol (Kdo, 3-deoxy-D-manno-2-octulosonic acid). Immunochemical studies on this pentasaccharide and the chemically synthesized partial structures Kdop alpha 2-8-Kdop alpha 2-4-Kdop alpha 2-6GlcNp beta, Kdop alpha 2-8-Kdop alpha 2-4-Kdop alpha, Kdop alpha 2-4-Kdop alpha, Kdop alpha 2-8-Kdop alpha, and Kdop alpha using artificial glycoconjugate antigens and monoclonal antibodies showed that fatty acids and phosphoryl groups (as present in native lipopolysaccharide) are dispensable for constitution of the genus-specific epitope and that the minimal structure to exhibit chlamydia specificity is the Kdo trisaccharide moiety.  相似文献   

5.
Lipopolysaccharide (LPS) of Chlamydophila psittaci but not of Chlamydophila pneumoniae or Chlamydia trachomatis contains a tetrasaccharide of 3-deoxy-alpha-d-manno-oct-2-ulopyranosonic acid (Kdo) of the sequence Kdo(2-->8)[Kdo(2-->4)] Kdo(2-->4)Kdo. After immunization with the synthetic neoglycoconjugate antigen Kdo(2-->8)[Kdo(2-->4)]Kdo(2-->4) Kdo-BSA, we obtained the mouse monoclonal antibody (mAb) S69-4 which was able to differentiate C. psittaci from Chlamydophila pecorum, C. pneumoniae, and C. trachomatis in double labeling experiments of infected cell monolayers and by enzyme-linked immunosorbent assay (ELISA). The epitope specificity of mAb S69-4 was determined by binding and inhibition assays using bacteria, LPS, and natural or synthetic Kdo oligosaccharides as free ligands or conjugated to BSA. The mAb bound preferentially Kdo(2-->8)[Kdo(2-->4)]Kdo(2-->4)Kdo(2-->4) with a K(d) of 10 microM, as determined by surface plasmon resonance (SPR) for the monovalent interaction using mAb or single chain Fv. Cross-reactivity was observed with Kdo(2-->4)Kdo(2-->4) Kdo but not with Kdo(2-->8)Kdo(2-->4)Kdo, Kdo disaccharides in 2-->4- or 2-->8-linkage, or Kdo monosaccharide. MAb S69-4 was able to detect LPS on thin-layer chromatography (TLC) plates in amounts of <10 ng by immunostaining. Due to the high sensitivity achieved in this assay, the antibody also detected in vitro products of cloned Kdo transferases of Chlamydia. The antibody can therefore be used in medical and veterinarian diagnostics, general microbiology, analytical biochemistry, and studies of chlamydial LPS biosynthesis. Further contribution to the general understanding of carbohydrate-binding antibodies was obtained by a comparison of the primary structure of mAb S69-4 to that of mAb S45-18 of which the crystal structure in complex with its ligand has been elucidated recently (Nguyen et al., 2003, Nat. Struct. Biol., 10, 1019-1025).  相似文献   

6.
The gene kdtA of Chlamydia pneumoniae strain TW-183, encoding the enzyme 3-deoxy-α- d - manno -octulosonic acid (Kdo)transferase of lipopolysaccharide biosynthesis, was cloned and sequenced. A single open reading frame of 1314 bp was identified, the deduced amino acid sequence of which revealed 69% similarity and 43% identity with KdtA of Chlamydia trachomatis and Chlamydia psittaci . The gene was expressed in the Gram-positive host Corynebacterium glutamicum and the primary gene product was characterized as a multi-functional glycosyltransferase. Cell-free extracts generated in vitro the genus-specific epitope of Chlamydia composed of the trisaccharide (αKdo(2–8)αKdo(2–4)αKdo. The results show that a single polypeptide affords three different glycosidic bonds, which is in contradiction to the dogma of glycobiology: 'one enzyme — one glycosidic bond'.  相似文献   

7.
Chlamydiae possess a genus-specific epitope that is located on the lipopolysaccharide (LPS) and is composed of a 3-deoxy-d -manno-octulosonic acid (Kdo) trisaccharide of the sequence αKdo-(2→8)–αKdo–(2→4)-αKdo. In Chlamydia trachomatis, this trisaccharide is biosynthetically generated through the action of a multi-functional Kdo-transferase encoded by the gene gseA. gseA of Chlamydia psittaci 6BC was cloned and expressed in a rough mutant (Re chemotype) of Escherichia coli (strain F515) that contains an LPS with only two α2→4-linked Kdo residues. Recombinant strains were able to add the immunodominant Kdo residue in a α2→8-linkage to the parental LPS, as determined by SDS–PAGE and Western blot analysis using a monoclonal antibody against the genus-specific epitope. The DNA sequence of gseA was determined and aligned to that published recently for C. trachomatis serovar L2. Most surprisingly, the two deduced amino acid sequences shared only an overall homology of 67%. Thus, gseA exhibits species specificity at the DNA level, whereas its gene product results in the synthesis of a carbohydrate antigen with genus specificity.  相似文献   

8.
The branched Kdo trisaccharide sodium (3-deoxy-α-d-manno-oct-2-ulopyranosyl)onate-(2→8)-[sodium (3-deoxy-α-d-manno-oct-2-ulopyranosyl)onate-(2→4)]-sodium (allyl 3-deoxy-α-d-manno-oct-2-ulopyranosid)onate has been prepared utilizing the regioselective glycosylation of the C-7, C-8 diol entity of a Kdo monosaccharide acceptor with a Kdo bromide donor followed by the attachment of the third Kdo unit to O-4 of the disaccharide intermediate. Deacetylation and hydrolysis of the methyl ester groups furnished the trisaccharide allyl glycoside which was converted into the corresponding 3-(2-aminoethylthio)propyl glycoside. Subsequent covalent attachment to bovine serum albumin furnished a neoglycoconjugate serving as an antigen for the induction of Chlamydophila psittaci-specific monoclonal antibodies.  相似文献   

9.
Abstract: Microtubule-associated protein 2 (MAP-2) is an abundant neuronal cytoskeletal protein that binds to tubulin and stabilizes microtubules. Using fusion protein constructs we have defined the epitopes of 10 monoclonal antibodies (mAbs) to discrete regions of human MAP-2. Proteins were expressed in pATH vectors. After electrophoresis, immunoblotting was performed. By western blot analysis five of the mAbs (AP-14, AP-20, AP-21, AP-23, and AP-25) share epitopes with only the high molecular weight isoforms (MAP-2a, MAP-2b); two of the mAbs (AP-18 and tau 46) recognize MAP-2a, MAP-2b, and MAP-2c. Although AP-18 immunoreactivity was detected within heat-stable protein homogenates isolated from a human neuroblastoma cell line MSN, fusion protein constructs encompassing human MAP-2 were negative, suggesting that the AP-18 epitope is phosphorylated. Furthermore, AP-18 immunoreactivity was lost after alkaline phosphatase treatment of heat-stable protein preparations from MSN cells. Four of the mAbs (322, 636, 635, and 39) recognize epitopes located within amino acids 169–219 of human MAP-2. AP-21 maps to a region between amino acids 553 and 645. AP-23 maps between amino acids 645 and 993, whereas AP-20, AP-14, and AP-25 map between amino acids 995 and 1332. Expression of the region of MAP-2 between amino acids 1787 and 1824 was positive to tau 46.  相似文献   

10.
With the increase in our understanding of its structure and enzymatic mechanism, HIV-1 integrase (IN) has become a promising target for designing drugs to treat patients with AIDS. To investigate the structure and function of IN, a panel of monoclonal antibodies (mAbs) directed against HIV-1 IN was raised and characterized previously in this laboratory. Among them, mAbs17, -4, and -33 were found to inhibit IN activity in vitro. In this study, we investigated the interaction of N-terminal-specific mAb17 and its isolated Fab fragment with full-length HIV-1 IN(1-288) and its isolated N-terminal, Zn(2+)-binding domain IN(1-49). Our results show that binding of Zn(2+) to IN(1-49) stabilizes the mAb17-IN complex and that dimer dissociation is not required for binding of the Fab. To identify the epitope recognized by mAb17, we developed a protein footprinting technique based on controlled proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Binding was mapped to a region within amino acids Asp(25)-Glu(35). This peptide corresponds to the end of a helix-turn-helix motif in the IN(1-55) NMR structure and contributes to the dimerization of the N-terminal domain. Antibody binding also appears to destabilize the N-terminal helix in this domain. A molecular model of the [IN(1-49)](2).(Fab)(1) complex shows Fab binding across the dimer protein and suggests a potential target for drug design. These data also suggest that mAb17 inhibits integrase activity by blocking critical protein-protein interactions and/or by distorting the orientation of the N-terminal alpha-helix. The relevance of our results to an understanding of IN function is discussed.  相似文献   

11.
Mass spectrometric analyses of lipopolysaccharide (LPS) from isogenic Escherichia coli strains with nonpolar mutations in the waa locus or overexpression of their cognate genes revealed that waaZ and waaS are the structural genes required for the incorporation of the third 3-deoxy-α-D-manno-oct-2-ulosonic acid (Kdo) linked to Kdo disaccharide and rhamnose, respectively. The incorporation of rhamnose requires prior sequential incorporation of the Kdo trisaccharide. The minimal in vivo lipid A-anchored core structure Kdo(2)Hep(2)Hex(2)P(1) in the LPS from ΔwaaO (lacking α-1,3-glucosyltransferase) could incorporate Kdo(3)Rha, without the overexpression of the waaZ and waaS genes. Examination of LPS heterogeneity revealed overlapping control by RpoE σ factor, two-component systems (BasS/R and PhoB/R), and ppGpp. Deletion of RpoE-specific anti-σ factor rseA led to near-exclusive incorporation of glycoforms with the third Kdo linked to Kdo disaccharide. This was accompanied by concomitant incorporation of rhamnose, linked to either the terminal third Kdo or to the second Kdo, depending upon the presence or absence of phosphoethanolamine on the second Kdo with truncation of the outer core. This truncation in ΔrseA was ascribed to decreased levels of WaaR glycosyltransferase, which was restored to wild-type levels, including overall LPS composition, upon the introduction of rybB sRNA deletion. Thus, ΔwaaR contained LPS primarily with Kdo(3) without any requirement for lipid A modifications. Accumulation of a glycoform with Kdo(3) and 4-amino-4-deoxy-l-arabinose in lipid A in ΔrseA required ppGpp, being abolished in a Δ(ppGpp(0) rseA). Furthermore, Δ(waaZ lpxLMP) synthesizing tetraacylated lipid A exhibited synthetic lethality at 21-23°C pointing to the significance of the incorporation of the third Kdo.  相似文献   

12.
The core oligosaccharide region of Klebsiella pneumoniae lipopolysaccharide contains some novel features that distinguish it from the corresponding lipopolysaccharide region in other members of the Enterobacteriaceae family, such as Escherichia coli and Salmonella. The conserved Klebsiella outer core contains the unusual trisaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo)-(2,6)-GlcN-(1,4)-GalUA. In general, Kdo residues are normally found in the inner core, but in K. pneumoniae, this Kdo residue provides the ligation site for O polysaccharide. The outer core Kdo residue can also be non-stoichiometrically substituted with an l-glycero-d-manno-heptopyranose (Hep) residue, another component more frequently found in the inner core. To understand the genetics and biosynthesis of core oligosaccharide synthesis in Klebsiella, the gene products involved in the addition of the outer core GlcN (WabH), Kdo (WabI), and Hep (WabJ) residues as well as the inner core HepIII residue (WaaQ) were identified. Non-polar mutations were created in each of the genes, and the resulting mutant lipopolysaccharide was analyzed by mass spectrometry. The in vitro glycosyltransferase activity of WabI and WabH was verified. WabI transferred a Kdo residue from CMP-Kdo onto the acceptor lipopolysaccharide. The activated precursor required for GlcN addition has not been identified. However, lysates overexpressing WabH were able to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the outer core.  相似文献   

13.
Pneumococcal surface protein A (PspA) is an antigenic variable vaccine candidate of Streptococcus pneumoniae. Epitope similarities between PspA from the American vaccine candidate strain Rx1 and Norwegian clinical isolates were studied using PspA specific monoclonal antibodies (mAbs) made against clinical Norwegian strains. Using recombinant PspA/Rx1 fragments and immunoblotting the epitopes for mAbs were mapped to two regions of amino acids, 1-67 and 67-236. The discovered epitopes were visualized by modelling of the PspA:Fab part of mAb in three dimensions. Flow cytometric analysis showed that the epitopes for majority of mAbs were accessible for antibody binding on live pneumococci. Also, the epitopes for majority of the mAbs are widely expressed among clinical Norwegian isolates.  相似文献   

14.
Yeast display is a powerful technology for the isolation of monoclonal antibodies (mAbs) against a target antigen. Antibody libraries have been displayed on the surface of yeast as both single-chain variable fragment (scFv) and antigen binding fragment (Fab). Here, we combine these two formats to display well-characterized mAbs as single-chain Fabs (scFabs) on the surface of yeast and construct the first scFab yeast display antibody library. When expressed on the surface of yeast, two out of three anti-human immunodeficiency virus (HIV)-1 mAbs bound with higher affinity as scFabs than scFvs. Also, the soluble scFab preparations exhibited binding and neutralization profiles comparable to that of the corresponding Fab fragments. Display of an immune HIV-1 scFab library on the surface of yeast, followed by rounds of sorting against HIV-1 gp120, allowed for the selection of 13 antigen-specific clones. When the same cDNA was used to construct the library in an scFv format, a similar number but a lower affinity set of clones were selected. Based on these results, yeast-displayed scFab libraries can be constructed and selected with high efficiency, characterized without the need for a reformatting step, and used to isolate higher-affinity antibodies than scFv libraries.  相似文献   

15.
The recognition reactions between a synthetic disaccharide alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl and two monoclonal antibodies (mAbs) were studied by NMR, yielding two distinct bound conformations of the carbohydrate ligand. One mAb, S23-24, recognizes the disaccharides alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl and alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl with similar affinities, whereas mAb S25-2 binds to the disaccharide alpha-Kdo-(2-->8)-alpha-Kdo-(2-->O)-allyl with an approximately 10-fold higher affinity than to the disaccharide alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl. Compared to S25-2, S23-24 binds to alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl with an approximately 50-fold increased affinity. We used NMR experiments that are based on the transferred NOE effect, specifically, trNOESY, trROESY, QUIET-trNOESY, and MINSY experiments, to show that the (2-->8)-specific mAb, S25-2, stabilizes a conformation of the alpha-(2-->4)-linked disaccharide that is not highly populated in solution. S23-24 recognizes two conformations of alpha-Kdo-(2-->4)-alpha-Kdo-(2-->O)-allyl, one that is highly populated in aqueous solution and another conformation that is similar to the one bound by S25-2. This is the first example where it is experimentally shown that a carbohydrate ligand may adopt different bioactive conformations upon interaction with mAbs with different fine specificities. Our NMR studies indicate that a careful examination of spin diffusion is critical for the analysis of bioactive conformations of carbohydrate ligands.  相似文献   

16.
Chlamydiae are obligatory intracellular parasites which are responsible for various acute and chronic diseases in animals and humans. The outer membrane of the chlamydial cell wall contains a truncated lipopolysaccharide (LPS) antigen, which harbors a group-specific epitope being composed of a trisaccharide of 3-deoxy-D-manno-oct-2-ulosonic (Kdo) residues of the sequence alpha-Kdo-(2-->8)-alpha-Kdo-(2-->4)-alpha-Kdo. The chemical structure was established using LPS of recombinant Escherichia coli and Salmonella enterica strains after transformation with a plasmid carrying the gene encoding the multifunctional chlamydial Kdo transferase. Oligosaccharides containing the Kdo region attached to the glucosamine backbone of the lipid A domain have been isolated or prepared by chemical synthesis, converted into neoglycoproteins and their antigenic properties with respect to the definition of cross-reactive and chlamydia-specific epitopes have been determined. The low endotoxic activity of chlamydial LPS is related to the unique structural features of the lipid A, which is highly hydrophobic due to the presence of unusual, long-chain fatty acids.  相似文献   

17.
In order to define binding interactions of Kdo-specific monoclonal antibodies directed against the chlamydial α-(2→8)-linked Kdo disaccharide epitope on a molecular level, modifications at the 7-position of the proximal and distal Kdo unit were investigated. The synthesis of 7-O-methyl and 7-azido-7-deoxy-7-epi-Kdo monosaccharide derivatives was achieved via an 8-O-TBS protected derivative, whereas methylation of O-7 at the proximal Kdo unit of the α-(2→8)-linked Kdo disaccharide was conveniently accomplished via a 4,5; 4′,5′; 7′,8′-tri-O-carbonyl-protected disaccharide intermediate. Attempted epimerization at C-5 of the inner unit of a α-(2→4)-linked Kdo disaccharide, however, resulted in formation of the corresponding 5,6-dehydro derivative, which was fully deprotected. Treatment of unprotected α-(2→8)- as well as α-(2→4)-linked Kdo disaccharides in neat acetic acid furnished the corresponding interresidue lactone derivatives. The lactones displayed limited stability under neutral conditions and were hydrolyzed at pH 7 within 3 days. Access to the lactones, however, provides a means for selective derivatization of the carboxylic group located at the distal Kdo residue, which was demonstrated by methanolysis of the lactone to afford the monomethyl ester of the α-(2→8)-linked Kdo disaccharide. ELISA inhibition experiments of the ligands with two Kdo-specific monoclonal antibodies showed slightly reduced reactivity for the binding of the α-(2→8) Kdo-specific antibody S25-2, whereas the 7-O-methyl disaccharide antigen displayed high binding affinity toward the Kdo monosaccharide-specific antibody S67-27.  相似文献   

18.
The crystal structures of the antigen-binding fragment of the murine monoclonal antibody (mAb) S25-39 in the presence of several antigens representing chlamydial lipopolysaccharide (LPS) epitopes based on the bacterial sugar 3-deoxy-α-D-manno-oct-2-ulosonic acid (Kdo) have been determined at resolutions from 2.4 to 1.8 ?. The antigen-binding site of this antibody differs from the well-characterized antibody S25-2 by a single mutation away from the germline of asparagine H53 to lysine, yet this one mutation results in a significant increase in avidity across a range of antigens. A comparison of the two antibody structures reveals that the mutated Lys H53 forms additional hydrogen bonds and/or charged-residue interactions with the second Kdo residue of every antigen having two or more carbohydrate residues. Significantly, the NH53K mutation results from a single nucleotide substitution in the germline sequence common among a panel of antibodies raised against glycoconjugates containing carbohydrate epitopes of chlamydial LPS. Like S25-2, S25-39 displays significant induced fit of complementarity determining region (CDR) H3 upon antigen binding, with the unliganded structure possessing a conformation distinct from those reported earlier for S25-2. The four different observed conformations for CDR H3 suggest that this CDR has evolved to exploit the recognition potential of a flexible loop while minimizing the associated entropic penalties of binding by adopting a limited number of ordered conformations in the unliganded state. These observations reveal strategies evolved to balance adaptability and specificity in the germline antibody response to carbohydrate antigens.  相似文献   

19.
Multidrug resistance in tumor cells is often accompanied by overexpression of multidrug resistance protein (MRP), a 190-kDa transmembrane protein that belongs to the ATP-binding cassette superfamily of transport proteins. MRP mediates ATP-dependent transport of a variety of conjugated organic anions and can also transport several unmodified xenobiotics in a glutathione-dependent manner. To facilitate structure-function studies of MRP, we have generated a panel of MRP-specific monoclonal antibodies (mAbs). Four of these mAbs, QCRL-2, -3, -4, and -6, bind intracellular conformation-dependent epitopes, and we have shown that they can inhibit the transport of several MRP substrates. Binding competition and immunoprecipitation assays indicated that mAbs QCRL-4 and -6 probably recognize the same detergent-sensitive epitope in MRP, whereas mAbs QCRL-2, -3, and -4 each bind distinct, non-overlapping epitopes. Fab fragments inhibit transport as effectively as the intact mAbs, suggesting that inhibition results from direct interactions of the mAbs with MRP. Immunodot blot and immunoprecipitation analyses revealed that the minimal regions of MRP sufficient for full reactivity of mAbs QCRL-2 and -3 are amino acids 617-858 and 617-932, respectively, which encompass the NH2-proximal nucleotide-binding domain (NBD). In contrast, the epitope bound by mAb QCRL-4 localized to amino acids 1294-1531, a region that contains the COOH-proximal NBD. However, none of the mAbs inhibited photolabeling of intact MRP with 8-azido-[alpha-32P]ATP. This suggests that rather than preventing nucleotide binding, the mAbs inhibit transport by interfering with substrate binding or by trapping MRP in a conformation that does not allow transport to occur. Our results also demonstrate for the first time that the NBDs of MRP can be expressed as soluble polypeptides that retain a native conformation.  相似文献   

20.
The structure of the antigen-binding fragment from the monoclonal antibody S64-4 in complex with a pentasaccharide bisphosphate fragment from chlamydial lipopolysaccharide has been determined by x-ray diffraction to 2.6 ? resolution. Like the well-characterized antibody S25-2, S64-4 displays a pocket formed by the residues of germline sequence corresponding to the heavy and light chain V gene segments that binds the terminal Kdo residue of the antigen; however, although S64-4 shares the same heavy chain V gene segment as S25-2, it has a different light chain V gene segment. The new light chain V gene segment codes for a combining site that displays greater affinity, different specificity, and allows a novel antigen conformation that brings a greater number of antigen residues into the combining site than possible in S25-2. Further, while antibodies in the S25-2 family use complementarity determining region (CDR) H3 to discriminate among antigens, S64-4 achieves its specificity via the new light chain V gene segment and resulting change in antigen conformation. These structures reveal an intriguing parallel strategy where two different combinations of germline-coded V gene segments can act as starting points for the generation of germline antibodies against chlamydial antigens and show how anti-carbohydrate antibodies can exploit the conformational flexibility of this class of antigens to achieve high affinity and specificity independently of CDR H3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号