首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renin is formed by intracellular processing of prorenin and catalyzes the conversion of angiotensinogen to angiotensin I, the precursor to angiotensin II. Several tissues synthesize prorenin. However, in man, the kidney is the only known source of circulating renin, raising the possibility that the processing enzyme is unique to that tissue. We have transfected a gene that directs prorenin synthesis in pituitary AtT-20 cells, which are capable of processing other prohormones. The results demonstrate that transfected AtT-20 cells can secrete inactive prorenin, accurately process prorenin to active renin, and be stimulated to release active renin in response to a secretagogue. These data imply that cellular elements capable of directing the processing of prorenin to renin and its correct subcellular compartmentalization may be present in nonrenal cell types and that critical elements of the regulated release of renin that occur in the kidney can be reconstituted in cells in culture.  相似文献   

2.
Abstract: The contribution of the prohormone-processing enzyme PC2 to the proteolytic maturation of proenkephalin was examined in three sets of studies. In the first, the processing of this precursor was compared in PC2-rich (Rin5f) and PC2-lacking (AtT-20) cell lines expressing proenkephalin by virtue of stable transfection. These studies showed that the time frame for processing of this precursor is cell line specific, with AtT-20 cells processing proenkephalin to peptide B much more rapidly than Rin cells. However, the latter cell line processed proenkephalin much more extensively, i.e., produced a greater proportion of the penta- to octapeptide enkephalins. The involvement of PC2 in these later processing events was analyzed by examining the processing of proenkephalin in PC2-overexpressing AtT-20 cell lines. These experiments yielded a processing profile similar to that observed for Rin cells, although the time frame of initial processing was similar to that found in AtT-20 cells. To confirm the physiological involvement of proenkephalin in the production of the small opioid peptides, we generated a Rin cell line in which the production of PC2 was impaired due to stable expression of antisense mRNA to this enzyme. These experiments provided conclusive evidence that the generation of Met-enkephalin-Arg-Phe and Met-enkephalin-Arg-Gly-Leu, but not the larger enkephalin-containing peptides, is mediated by PC2. Taken together, our data support the idea that PC2 is physiologically capable of mediating only the later processing steps of neuropeptide precursors. PC2 thus appears to be the primary enzyme responsible for the generation of bioactive opioid peptide species from proenkephalin.  相似文献   

3.
The cDNA for porcine preprocholecystokinin (pre-pro-CCK) was engineered for expression in mammalian cells under the control of the Rous sarcoma virus-long terminal repeat promoter. This expression construct was transfected into the murine anterior pituitary cell line, AtT-20. A stable cell line (AtT-20/CCK) was derived that expresses CCK mRNA indistinguishable from the CCK mRNA found in pig brain or gut. The AtT-20/CCK cells carry out proteolytic processing and sulfation reactions to generate authentic sulfated CCK8 from pro-CCK. The cells also store and secrete CCK-immunoreactive peptides. This secretion can be stimulated with corticotropin releasing factor, the natural secretagogue for anterior pituitary cells. In contrast, monkey kidney epithelial cells (COS cells), which are transiently transfected to express CCK, predominantly secrete nonsulfated pro-CCK into the medium. These studies show that a murine neuroendocrine cell line contains the complete processing machinery required to generate authentic porcine CCK8. The processing events include simultaneous proteolytic processing at one and two basic amino acid sites and sulfation of tyrosine residues. The cell line thus duplicates exactly the processing patterns found to occur in pig brain cortex.  相似文献   

4.
A recombinant plasmid containing the rat prodynorphin cDNA was introduced into the mouse anterior pituitary corticotroph cell line AtT-20. These cells normally express and posttranslationally process proopiomelanocortin, but not prodynorphin. Stable transformants were isolated and analyzed for the expression and processing of prodynorphin. The stably transformed AtT-20 cells that expressed a 1.3-kilobase prodynorphin mRNA also expressed prodynorphin protein and processed it to dynorphin peptides. The peptides included leucine-enkephalin, beta-neoendorphin, dynorphin-A8, and dynorphin-B, as identified by gel filtration and reverse phase HPLC followed by RIA using peptide-specific antisera. These results demonstrate that AtT-20 cells efficiently and accurately process prodynorphin at both dibasic sites and monobasic cleavage sites, indicating that the AtT-20 cells contain enzymes capable of cleaving the precursor not only at dibasic residues but also at monobasic residues. The release of prodynorphin-derived peptides paralleled secretion of endogenous proopiomelanocortin-derived peptides when stimulated by CRF, a natural secretagogue for ACTH.  相似文献   

5.
The biosynthesis of gastrin involves a complex series of post-translational processing reactions that result in the formation of a biologically active secretory product. To study the mechanisms for two specific reactions in gastrin processing, namely dibasic cleavage and amidation, we infected AtT-20, GH3, and Rin5-f cells with the retroviral expression vector, pZip-NeoSV(X), containing human gastrin cDNA. We detected gastrin and its glycine extended post-translational processing intermediates (G-gly) in the media and cell extracts of successfully infected cells. Characterization of the molecular forms of gastrin in these cell lines revealed that GH3 and Rin5-f processed gastrin in a manner similar to antral G-cells but the cleavage of the Lys74-Lys75 bond that converts G34 to G17 appeared to be suppressed in AtT-20 cells. Even after conversion of this site to Arg74-Arg75 via site-directed mutagenesis, the At-20 cells synthesized G34 predominantly. All of the infected cells amidated gastrin but the gastrin/G-gly ratio, a reflection of amidation within the cells, was enhanced in GH3 and Rin5-f cells but diminished in AtT-20 cells upon treatment with dexamethasone (10(-4) M) for 3 days. The dibasic cleavage of gastrin was uneffected by dexamethasone. Our data suggest that the activities of post-translational processing reactions responsible for the synthesis of biologically active gastrin exhibit considerable tissue and substrate specificity.  相似文献   

6.
A vaccinia virus (VV) vector was used to express rat plasma kallikrein (rPK) in the constitutively secreting cells, BSC-40, and in the endocrine regulated cells, AtT-20. Using a specific rPK antibody and a fluorogenic substrate, Phe-Phe-Arg-AMC, we demonstrated that in both cell lines VV infections resulted in the synthesis of an immunoreactive enzyme predominantly present as a zymogen which can be activated with trypsin. Stimulation of VV:rPK-infected AtT-20 cells with either 5mM 8-bromo-cAMP or 56 mM KCl resulted in a different pattern of rPK and ACTH secretion, strongly suggesting that rPK follows the constitutive secretory pathway. Finally, the 10% rPK activity found within AtT-20 cell extracts had no effect on pro-opiomelanocortin (POMC) processing either intracellularly or extracellularly. The above data show that the biosynthetic machinery of both cell lines analyzed does not allow the efficient activation of plasma prekallikrein. Finally, despite the PK's demonstrated ability to cleave various hormone precursors in vitro at pairs of basic residues, in vivo, we did not obtain evidence that this hepatic enzyme can also act as an intracellular pro-protein processing enzyme.  相似文献   

7.
Abstract: Cultured astrocytes have been shown to secrete various neuropeptides and the neuropeptide processing enzyme, carboxypeptidase E (CPE). The secretion of CPE enzymatic activity from astrocytes has been shown previously to be increased approximately twofold by treatment with tetradecanoylphorbol 13-acetate (TPA), a phorbol ester. In this study, metabolic labeling with [35S]Met was utilized to examine the effect of TPA on the biosynthesis of CPE protein in cultured astrocytes and in AtT-20 cells, a pituitary-derived cell line. Treatment of astrocytes with 0.1 μg/ml TPA for 24 h caused an 80% increase in the level of radiolabeled CPE in both the media and the cells, indicating that the synthesis of CPE was stimulated by the TPA. AtT-20 cells also secreted more radiolabeled CPE in response to TPA, but this increase was offset by a proportional decrease in the cellular level of radiolabeled CPE, and synthesis of CPE was not stimulated in this cell line. Northern blot analysis demonstrated that 0.1 μg/ml TPA elevated CPE mRNA by approximately 50% in cultured astrocytes but not in AtT-20 cells. Quantitative in situ hybridization studies demonstrated that the TPA-induced increase in CPE mRNA expression was largely due to increases in the number of cells expressing CPE mRNA, although for astrocytes from some brain regions the average level of CPE mRNA per cell was also elevated by TPA. These results suggest that astrocytes can be induced to express CPE, which is consistent with a role for astrocytes in intercellular signaling.  相似文献   

8.
Mammalian cells in culture, transfected with human renin gene, can provide a useful tool for studying renin biosynthesis and secretion. We transfected fibroblast cells (mouse L929 and Chinese hamster ovary cells) and pituitary tumor cells (mouse AtT-20) with the human renin gene and a selectable plasmid (pSV2Neo). Transfected fibroblasts synthesize prorenin only. Prorenin is secreted by fibroblasts constitutively and the secretion is not influenced by 8-bromo-cAMP. On the other hand, transfected AtT-20 cells synthesized both prorenin and mature active renin. Transfected AtT-20 cells release prorenin by constitutive secretion but mature renin is secreted by a regulated mechanism since the secretion of the former is not influenced by 8-bromo-cAMP but the release of the latter is significantly stimulated. Our studies demonstrate that human renin may be secreted by at least two cellular pathways: prorenin by a constitutive pathway and mature renin by a regulated pathway. These transfected cells may provide useful models for studies of human renin synthesis, processing, and secretion.  相似文献   

9.
Cultured astrocytes have recently been shown to produce certain neuropeptides, as well as neuropeptide processing enzymes. To characterize the secretory pathway in cultured astrocytes, we used the neuropeptide processing enzyme carboxypeptidase E (CPE) as a marker for neuropeptide secretion. Cultured astrocytes and AtT-20 cells, a mouse pituitary-derived neuroendocrine cell line, were labeled with [35S]Met for 15 min and then chased with unlabeled Met. CPE was isolated from either medium or cell extracts using a substrate affinity column. The time course of secretion of radiolabeled CPE was significantly different for cultured astrocytes as compared with AtT-20 cells. CPE was rapidly secreted from the astrocytes after a 30-min lag time, presumably reflecting transport through the endoplasmic reticulum and Golgi apparatus, followed by constitutive secretion. The secretion of radiolabeled CPE was essentially complete by 2 h. In contrast, only a portion of the radiolabeled CPE was secreted from AtT-20 cells over a 2-3-h period, indicating that the majority of newly synthesized CPE is stored, presumably in secretory granules within the AtT-20 cells. The regulation of CPE secretion from astrocytes was also examined. CPE secretion is stimulated two- to threefold by prolonged treatment (3-48 h) with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) but not by treatment with other secretagogues that stimulate CPE secretion from AtT-20 cells (forskolin, isoproterenol, A23187, and vasoactive intestinal peptide) or short (less than 3 h) exposure to TPA. Taken together, these results indicate that the secretory pathway for CPE, and presumably neuropeptides, is substantially different in astrocytes than the secretory pathway for CPE in neuroendocrine cells.  相似文献   

10.
11.
Antibody was raised against a synthetic undecapeptide (PS 11) which corresponds to the prosegment of the rat tissue kallikrein precursor. The potential to recognize rat urinary active or inactive kallikrein was assessed by an enzyme immunoassay method for PS 11, using beta-D-galactosidase as the labeling enzyme. The active kallikrein failed to compete with the enzyme-labeled PS 11 in binding to the antibody. The inactive kallikrein displaced the enzyme-labeled PS 11 in this enzyme immunoassay, and the displacement curve was in parallel with that of PS 11. These results indicate that rat urinary inactive kallikrein contains a prosequence recognized by the antibody to PS 11. This inactive kallikrein is probably a proform of tissue kallikrein.  相似文献   

12.
Atrial natriuretic factor (ANF) is stored within atrial myocyte secretory granules as pro-ANF (ANF-(1-126] and is proteolytically processed co-secretionally C-terminal to a single basic amino acid to form ANF-(1-98) and the bioactive product ANF-(99-126). Pro-ANF is also expressed in certain non-cardiac neuroendocrine cell types (e.g. brain, adrenal). Although the relatively low levels of the peptide in these cell types have precluded detailed processing and secretion studies using cultured cells, some work with tissue extracts suggests that pro-ANF is pre-secretionally processed between or C-terminal to Arg101-Arg102 in such cells. In order to assess whether cultured non-cardiac endocrine cells process pro-ANF pre- or co-secretionally, and to establish whether both paired and single basic amino acids can serve as cleavage sites, transfection studies were carried out using the adrenocorticotropic hormone (ACTH)-producing pituitary tumor cell line AtT-20/D-16v. These cells normally cleave pro-ACTH/endorphin pre-secretionally at selected, but not all, pairs of basic amino acids to a variety of product peptides. A prepro-ANF expression plasmid was constructed and transfected into the AtT-20 cells. The resulting ANF/AtT-20 cell clone selected for this study expressed ACTH at levels similar to the untransfected wild type cells and secreted immunoreactive ANF-related material at a rate of approximately 1 fmol/min/10(5) cells, which was about 10% the rate of ACTH secretion. The rates of secretion of both ANF and ACTH could be increased 3-5-fold with a variety of known AtT-20 cell secretagogues including phorbol esters and the beta-adrenergic agonist, isoproterenol, thus indicating that both peptides were routed through regulated secretory pathways. Utilizing a combination of specific antisera directed against various regions of pro-ANF, size exclusion and reversed phase high performance liquid chromatography, and peptide mapping, it was shown that the ANF/AtT-20 cells contained and secreted the bioactive peptide ANF-(103-126) and -(1-97). These results indicate that the ANF/AtT-20 cells specifically cleave pro-ANF pre-secretionally at the same single basic site used by cardiac tissue; this single basic cleavage is apparently followed by removal of Arg98 by carboxypeptidase H. It is also apparent that the cells can cleave at the sole paired basic site in pro-ANF, which is the probable cleavage site used by neurons and some other endocrine cells that express low levels of the prohormone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The biosynthesis of neuroendocrine peptides is typically examined by following the rate of appearance of a radioactive amino acid into mature forms of peptides. In the present study, we labeled cell lines with L-leucine containing 10 deuterium residues (d(10)-Leu) and used mass spectrometry to measure the biosynthetic rate of gamma-lipotropin in the AtT-20 cell line and insulin in the INS-1 cell line. After 3 h of labeling, both peptides show detectable levels of the d-labeled form in the cells and media. The relative levels of the d-labeled forms are greater in the media than in the cells, consistent with previous studies that found that newly synthesized peptides are secreted at a higher rate than older peptides under basal conditions. When AtT-20 cells were stimulated with KCl or forskolin, the ratio of d- to H-labeled gamma-lipotropin in the medium decreased, suggesting that the older peptide was in a compartment that could be released upon the appropriate stimulation. Overexpression of proSAAS in AtT-20 cells reduced the ratio of d- to H-labeled gamma-lipotropin, consistent with the proposed role of proSAAS as an endogenous inhibitor of prohormone convertase-1. Labeling with d10-Leu was also used to test whether altering the pH of the secretory pathway with chloroquine affected the rate of peptide biosynthesis. In AtT-20 cells, 30 microm chloroquine for 3 or 6 h significantly reduced the rate of formation of gamma-lipotropin in both cells and media. Similarly, INS-1 cells treated with 10, 30, or 60 microm chloroquine for 6 h showed a significant decrease in the rate of formation of insulin in both cells and media. These results are consistent with the acidic pH optima for peptide processing enzymes. Stable isotopic labeling with d10-Leu provides a sensitive method to examine the rate of peptide formation in neuroendocrine cell lines.  相似文献   

14.
When the anti-glucocorticoid receptor monoclonal antibody (BuGR2) was initially incorporated either into a new immunoassay strategy or into a traditional sedimentation analysis technique, both methods failed to reveal any change in the cellular content or distribution of BuGR2-reactive antigen following glucocorticoid treatment of AtT-20 cells. Furthermore, the immunoassay also generated strong positive signals with cytosol and nuclear extracts from a receptor-negative cell line (E8.2) derived from L929 cells. However, when the BuGR2 antibody was incorporated into a combined immunoprecipitation/Western blot analysis of AtT-20 cell extracts, only the glucocorticoid receptor protein produced a signal on the Western blot, even though other proteins had been specifically immunoprecipitated by BuGR2 antibody and were clearly present on the Western blot membrane. Applying the latter approach to AtT-20 cells chronically treated with glucocorticoid, we observed not only that the receptor protein rapidly and persistently (1–96 h) accumulated in the nucleus, but also that its total cellular content was first depleted (24 h) and then was progressively replenished (48–96 h). From these studies in AtT-20 cells we conclude: (i), the BuGR2 antibody can exhibit differential immunospecificity dependent upon whether antigen mixtures are denatured or not; (ii), glucocorticoid receptor protein resided almost exclusively in the nucleus during four days of glucocorticoid treatment and (iii), the same treatment regimen resulted in total receptor protein levels being regulated in a biphasic pattern. Together, these results suggest that receptor regulation in AtT-20 cells is a complex event, and that, since steroid was constantly present during our experiments, other factors are involved in regulation of receptor levels.  相似文献   

15.
An expression vector was constructed that placed the cDNA for human neuropeptide Y (NPY) under the control of the mouse metallothionein promoter and was used to transfect the AtT-20 mouse anterior pituitary corticotrope cell line. AtT-20 cells normally process the pro-ACTH/endorphin precursor but do not produce detectable levels of NPY. The resulting AtT-20/NPY cell line (Mt.NPY1a) was used to study the ability of the corticotrope cells to synthesize, process, and secrete the foreign proNPY-related peptide products. The stable cell line created contains approximately 40 copies of proNPY cDNA per cell. NPY mRNA levels and proNPY synthesis were increased at least 35-fold when maximally induced with cadmium; proNPY synthesis was also induced by glucocorticoids. Upon induction the NPY secretion rate was equimolar to that of the endogenous peptides. ProNPY, NPY, and the COOH-terminal peptide produced by this cell line had molecular weight and amino acid-labeling pattern predicted from cDNA sequence data and from previous isolation of NPY-related molecules from NPY-producing cells. The structures of secreted proNPY, NPY, and COOH-terminal peptide, as well as determination of the site of proteolytic cleavage between NPY and the COOH-terminal peptide, were determined by tryptic mapping and Edman degradation of secreted biosynthetically labeled peptide products. The proNPY molecule appears to be processed in the same pathway responsible for cleavage of the endogenous pro-ACTH/endorphin precursor. Secretion of proNPY-derived peptides paralleled secretion of endogenous pro-ACTH/endorphin-derived products, under both basal and stimulated conditions. With induction proNPY expression there is a dose-dependent inhibition of both proNPY and pro-ACTH/endorphin proteolytic processing.  相似文献   

16.
P-selectin (PADGEM, GMP-140, CD62) is a transmembrane protein specific to alpha granules of platelets and Weibel-Palade bodies of endotheial cells. Upon stimulation of these cells, P-selectin is translocated to the plasma membrane where it functions as a receptor for monocytes and neutrophils. To investigate whether the mechanism of targeting of P-selectin to granules is specific for megakaryocytes and endothelial cells and/or dependent on von Willebrand factor, a soluble adhesive protein that is stored in the same granules, we have expressed the cDNA for P-selectin in AtT-20 cells. AtT-20 cells are a mouse pituitary cell line that can store proteins in a regulated fashion. By double-label immunofluorescence, P-selectin was visible as a punctate pattern at the tips of cell processes. This pattern closely resembled the localization of ACTH, the endogenous hormone produced and stored by the AtT-20 cells. Fractionation of the transfected cells resulted in the codistribution of P-selectin and ACTH in cellular compartments of the same density. Immunoelectron microscopy using a polyclonal anti-P-selectin antibody demonstrated immunogold localization in dense granules, morphologically indistinguishable from the ACTH granules. Binding experiments with radiolabeled monoclonal antibody to P-selectin indicated that there was also surface expression of P-selectin on the AtT-20 cells. After stimulation with the secretagogue 8-Bromo-cAMP the surface expression increased twofold, concomitant with the release of ACTH. In contrast, the surface expression of P-selectin transfected into CHO cells, which do not have a regulated pathway of secretion, did not change with 8-Br-cAMP treatment. In conclusion, we provide evidence for the regulated secretion of a transmembrane protein (P-selectin) in a heterologous cell line, which indicates that P-selectin contains an independent sorting signal directing it to storage granules.  相似文献   

17.
Relaxin is a polypeptide hormone involved in remodeling of the birth canal during parturition. It is synthesized as a preprohormone precursor, which undergoes specific processing to form the mature two-chain disulfide-linked active species that is secreted by the cell. A major part of this processing requires endoproteolytic cleavage at specific pairs of basic amino acid residues, an event necessary for the maturation of a variety of important biologically active proteins, such as insulin and nerve growth factor. Human type 2 preprorelaxin was coexpressed in human kidney 293 cells with the candidate prohormone convertase-processing enzymes mPC1 or mPC2, both cloned from the mouse pituitary tumor AtT-20 cell line, or with the yeast kex2 alpha-mating factor-converting enzyme from Saccharomyces cerevisiae. Prorelaxin expressed alone in 293 cells was secreted into the culture medium unprocessed. Transient coexpression with mPC1 or kex2, but not with mPC2, resulted in the secretion of a low mol wt species with an electrophoretic mobility very similar, if not identical, to that of authentic mature relaxin purified from human placenta. This species was precipitable by monoclonal antibodies specific for relaxin and had a retention time on reverse phase HPLC comparable to that of relaxin. Its analysis by both electrospray and fast atom bombardment mass spectrometry generated mass data that were consistent only with mature relaxin. The basic residues required for mPC1-dependent cleavage of prorelaxin are defined by site-directed mutagenesis.  相似文献   

18.
Variants of the carboxyl-terminal KDEL sequence direct intracellular retention   总被引:13,自引:0,他引:13  
Soluble proteins which reside in the lumen of the endoplasmic reticulum share a common carboxyl-terminal tetrapeptide Lys-Asp-Glu-Leu (KDEL). Addition of the tetrapeptide to a normally secreted protein is both necessary and sufficient to cause retention in the endoplasmic reticulum. In order to characterize the critical residues in the KDEL signal, cDNAs encoding proneuropeptide Y (pro-NPY) with the 4-amino acid carboxyl-terminal extension KDEL or a series of KDEL variants were expressed in the AtT-20 cell line. AtT-20 cells, a mouse anterior pituitary corticotrope cell line, synthesize, process, and secrete the pro-ACTH/endorphin precursor. Since post-translational processing in AtT-20 cells has been extensively characterized, it provides a model system in which the processing of a foreign peptide precursor (pro-NPY) and the endogenous precursor (pro-ACTH/endorphin) can be compared. Altered cDNAs encoding pro-NPY with KDEL, DKEL, RDEL, KNEL, KDQL, or KDEA at the COOH terminus were used to generate stable AtT-20 cell lines. The processing of pro-NPY to neuropeptide Y and the carboxyl-terminal peptide was studied using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, tryptic peptide mapping, and radiosequencing. Addition of the tetrapeptides KDEL, DKEL, RDEL, or KNEL to the COOH terminus of the neuropeptide Y precursor, a peptide hormone normally processed and secreted from neuronal cells, caused complete intracellular retention of the unprocessed prohormone in AtT-20 cells. However, KDQL and KDEA-extended pro-NPY molecules were processed and secreted like wild-type pro-NPY when expressed in AtT-20 cells. The secretion of proNPY-derived peptides in these cell lines paralleled secretion of endogenous pro-ACTH/endorphin-derived products under both basal and stimulated conditions. These mutagenesis studies demonstrate that variants of the KDEL retention signal can direct intracellular retention.  相似文献   

19.
Oligonucleotides directed towards the active site regions of aspartic proteases were used as primers for the polymerase chain reaction to identify a unique sequence (asppcr1) from the AtT-20 anterior pituitary corticotrope cell line. Asppcr1 showed the greatest similarity (85% identity) to human cathepsin E [(1989) J. Biol. Chem. 264, 16748-16753]. Northern blot analysis of AtT-20 RNA revealed a single 1.9 kB message. Nuclease protection experiments indicated that asppcr1 mRNA was present in pancreas, spleen, testis and liver at low levels and undetectable in heart and brain. This contrasted with the lysosomal aspartic protease, cathepsin D whose mRNA showed a broader tissue distribution. The restricted message distribution of asppcr1 supports a more specific role for this aspartic protease in aspect(s) of cellular physiology.  相似文献   

20.
We cloned and sequenced a cDNA from a library of mouse pituitary AtT-20 cells which are known to cleave an endogenous and various foreign prohormones at dibasic sites. This cDNA encodes a novel 753-residue protein, named PC3, which is structurally related to the yeast Kex2 protease involved in precursor cleavage at dibasic sites and to recently identified mammalian Kex2-like proteins, furin and PC2. Among examined cell lines and tissues, PC3 mRNA was only detected in AtT-20 cells. The substrate specificity of PC3 expressed in mammalian cells was similar to that observed in AtT-20 cells. We conclude that PC3 is a resident prohormone processing endoprotease in AtT-20 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号