首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The complete mitochondrial DNA (mtDNA) control region was amplified and directly sequenced in two species of shrew, Crocidura russula and Sorex araneus (Insectivora, Mammalia). The general organization is similar to that found in other mammals: a central conserved region surrounded by two more variable domains. However, we have found in shrews the simultaneous presence of arrays of tandem repeats in potential locations where repeats tend to occur separately in other mammalian species. These locations correspond to regions which are associated with a possible interruption of the replication processes, either at the end of the three-stranded D-loop structure or toward the end of the heavy-strand replication. In the left domain the repeated sequences (R1 repeats) are 78 bp long, whereas in the right domain the repeats are 12 bp long in C. russula and 14 bp long in S. araneus (R2 repeats). Variation in the copy number of these repeated sequences results in mtDNA control region length differences. Southern blot analysis indicates that level of heteroplasmy (more than one mtDNA form within an individual) differs between species. A comparative study of the R2 repeats in 12 additional species representing three shrew subfamilies provides useful indications for the understanding of the origin and the evolution of these homologous tandemly repeated sequences. An asymmetry in the distribution of variants within the arrays, as well as the constant occurrence of shorter repeated sequences flanking only one side of the R2 arrays, could be related to asymmetry in the replication of each strand of the mtDNA molecule. The pattern of sequence and length variation within and between species, together with the capability of the arrays to form stable secondary structures, suggests that the dominant mechanism involved in the evolution of these arrays in unidirectional replication slippage.   相似文献   

3.
L S Lin  R J Meyer 《Plasmid》1986,15(1):35-47
DNA required in cis for the replication of the broad-host-range plasmid R1162 is located on two contiguous HpaII fragments of 210 and 370 bp. The latter of these contains three and one-half, perfectly conserved, 20-bp directly repeated sequences. The significance of these for plasmid replication, incompatibility, and copy-number control was examined by generating deletions into these repeats and testing the properties of the remaining DNA. We conclude from the results that the direct repeats are essential for expression of incompatibility and for the decrease in copy number observed when the directly repeated DNA is cloned into R1162. Little, if any, additional DNA is required from the ori region for these properties. Moreover, deletions of intermediate size result in an intermediate level of incompatibility, indicating the importance of the periodic structure of the direct repeats. The directly repeated DNA is also required for an active origin of replication, as are additional, nonrepeated sequences adjacent to this DNA. The properties of the direct repeats are discussed with respect to their possible role in the replication of R1162 DNA.  相似文献   

4.
5.
Summary Several clones containing clusters of repetitive elements were isolated from a human chromosome 22 specific library. An EcoRI-XhoI fragment of 860bp was subcloned and was shown to belong to a family of tandemly repeated DNA linked to the Y-specific 3.4 kb HaeIII band. This probe hybridizes to several sets of sequences or subfamilies. The most abundant subfamily is a 1.8kb long sequence containing one EcoRV site, and in most repeats, one AvaII and one KpnI site. Using human-rodent somatic cell hybrid DNA, we have shown that this cluster is present on human chromosome 9 although presence on chromosome 15 is not excluded. Another subfamily, 6.1 kb long, appears to be exclusive of chromosome 16. By in situ hybridization with metaphasic chromosomes, these sets of repeats were mapped to the constitutive heterochromatin of a few chromosomes. Coexistence in one genome of long tandem repeats of distinct organization but similar length may represent the outcome of a continuous process of fixation of variant sequences. Homologous repeats are also abundant in four higher primate genomes (Orangutan, gorilla, chimpanzee, and man) but absent in other primates (African green monkey, rhesus monkey, baboon, and mouse lemur).  相似文献   

6.
7.
The chromosomal locations of ribosomal DNA in wheat, rye and barley have been determined by in situ hybridization using high specific activity 125I-rRNA. The 18S-5.8S-26S rRNA gene repeat units in hexaploid wheat (cv. Chinese Spring) are on chromosomes 1B, 6B and 5D. In rye (cv. Imperial) the repeat units occur at a single site on chromosome 1R(E), while in barley (cv. Clipper) they are on both the chromosomes (6 and 7) which show secondary constrictions. In wheat and rye the major 5S RNA gene sites are close to the cytological secondary constrictions where the 18S-5.8S-26S repeating units are found, but in barley the site is on a chromosome not carrying the other rDNA sequences. — Restriction enzyme and R-loop analyses showed the 18S-5.8S-26S repeating units to be approximately 9.5 kb long in wheat, 9.0 kb in rye and barley to have two repeat lengths of 9.5 kb and 10 kb. Electron microscopic and restriction enzyme data suggest that the two barley forms may not be interpersed. Digestion with EcoR1 gave similar patterns in the three species, with a single site in the 26S gene. Bam H1 digestion detected heterogeneity in the spacer regions of the two different repeats in barley, while in rye and wheat heterogeneity was shown within the 26S coding sequence by an absence of an effective Bam H1 site in some repeat units. EcoR1 and Bam H1 restriction sites have been mapped in each species. — The repeat unit of the 5S RNA genes was approximately 0.5 kb in wheat and rye and heterogeneity was evident. The analysis of the 5S RNA genes emphasizes the homoeology between chromosomes 1B of wheat and 1R of rye since both have these genes in the same position relative to the secondary constriction. In barley we did not find a dominant monomer repeat unit for the 5S genes.  相似文献   

8.
The chromosome segment which contains the genes responsible for production of pyocin R2 in P. aeruginosa PAO was defined physically using R-prime plasmids constructed in vivo from R68.45. The previous conclusion from genetic mapping that the cluster of pyocin R2 genes is located in between trpC and trpE genes was confirmed by deletion mapping of various R prime plasmids bearing the trpC gene. The pyocin R2 gene cluster was further localized on two contiguous HindIII fragments of 16 kb and 8.0 kb. PML14 strain, in which R-type pyocin genes were completely deleted, had only one 11 kb HindIII fragment instead. Heteroduplexes between this 11 kb fragment with the two HindIII fragments of PAO revealed that the cluster of pyocin R2 genes was an insertion 13 kb long.  相似文献   

9.
SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size   总被引:8,自引:0,他引:8  
By in situ hybridization, short interspersed repeated DNA elements (SINEs), exemplified by Alu repeats, are located principally in Giemsa-light human metaphase chromosome bands. In contrast, the L1 family of long interspersed repeats (LINEs) preferentially cluster in Giemsa-dark bands. These SINE/LINE patterns also generally correspond to early and later replication band patterns. In order to provide a molecular link between structurally visible chromosome bands and a framework of interspersed repeats, we investigated patterns of SINE and LINE hybridization using pulse-field gel electrophoresis (PFGE). Interspersed SINEs and LINEs hybridize with high intensity to specific size fragments of 0.2–3 megabase pairs (Mb). Using appropriate restriction enzymes and pulse-field conditions, a number of fragments were delineated that were either SINE or LINE rich, and were mutually exclusive. Control studies with a human endogenous retroviral repeat that is related in sequence to the major LINE family, delineated a subset of fragments of 0.07–0.4 Mb with unequal intensity. Thus these less numerous repeats also appear to cluster selectively in DNA domains that are larger than a chromosome loop (60–120 kb). In summary, PFGE studies independently confirm the clustering of interspersed repeats on contiguous DNA loops. Selective clustering of repeat motifs may contribute to special structural or functional properties of large chromosome domains, such as chromatin extension/condensation or replication characteristics. In some cases the DNA fragments defined by these repeats approach the size of tandem satellite arrays.  相似文献   

10.
Two subfamilies of L1 elements, differing dramatically in the first 1.2 kb of sequence at their 5' ends, were identified in the prosimian primate, Galago garnetti. Interesting patterns of sequence similarity were observed between the galago subfamilies, and with the L1s from human and from another prosimian, the slow loris. Furthermore, members of one of the subfamilies have six to eight tandemly repeated units of 73 bp, starting about 730 bp from their 5' ends. Such tandem repeats have not been reported in other primate L1s, but a striking sequence similarity was found between the galago tandem repeats and those previously described at the 5' termini of some mouse L1s [Loeb, D. D. et al. Mol. Cell. Biol. 6, 168-182, 1986]. Although the similar sequence indicates a shared, conserved function, the galago repeats are sub-terminal and therefore cannot serve as portable RNA polymerase II promoters, as has been suggested for the mouse tandem repeats.  相似文献   

11.
Sequences in the cloned Drosophila melanogaster rDNA fragments described by Dawid et al. (1978) were compared by heteroduplex mapping. The nontranscribed spacer regions in all fragments are homologous but vary in length. Deletion loops were observed at variable positions in the spacer region suggesting that spacers are internally repetitious.Many rDNA repeats in D. melanogaster have a 28 S gene interrupted by a region named the ribosomal insertion. Insertions of 0.5, 1 and 5 kb were found in repeat-length EcoRI fragments. These DNA regions, named type 1 insertions, are homologous at their right ends. Although 1 kb insertions are quite precisely twice as large as 0.5 kb insertions they do not represent a duplication of the shorter sequence. Some insertions have at least one EcoRI site and therefore yield EcoRI fragments which are only part of a repeat. The sequences in two cloned right-hand partial insertion sequences are homologous, but the sequences in two lefthand partial insertions are not. None of the EcoRI-restrictable insertion sequences has any homology to any part of type 1 insertions; they are thus grouped together as type 2. Evidence for insertion sequences of at least two types in uncloned rDNA was obtained by annealing a cloned fragment with a 1 kb insertion to genomic rDNA. About 15% of the rDNA repeats show substitution type loops between the 1 kb type 1 insertion derived from the cloned fragment and type 2 insertions in the rDNA.  相似文献   

12.
Biogenesis of poxviruses: mirror-image deletions in vaccinia virus DNA   总被引:11,自引:0,他引:11  
G McFadden  S Dales 《Cell》1979,18(1):101-108
Restriction endonuclease analysis of viral DNA extracted from wild-type and temperature-sensitive mutants of vaccinia IHD-W (Dales et al., 1978) revealed sequence alterations in approximately 20% of all ts clones examined. The rearrangements were due to deletions up to 250 nucleotide pairs long. Using Eco RI, Sal I, Bam I, Hpa I and Ava I, the deletions were always observed in the same fragments, while analysis with Hind III demonstrated deletions of identical size in the two terminal fragments. Since vaccinia virus contains inverted terminal repeats of more than 10 kb, these clones possess identical deletions of opposite orientation at both ends of the genome. Analysis of several revertants of the ts mutants demonstrated that the deletions probably arise as events independent from those producing ts lesions and are generated spontaneously at high frequency. This implies that a single event during replication caused the elimination of nonessential information, and suggests that circular intermediates must exist transiently during viral replication.  相似文献   

13.
Genomic representation of the Hind II 1.9 kb repeated DNA.   总被引:19,自引:10,他引:9       下载免费PDF全文
The genomic representation and organization of sequences homologous to a cloned Hind III 1.9 kb repeated DNA fragment were studied. Approximately 80% of homologous repeated DNA was contained in a genomic Hind III cleavage band of 1.9 kb. Double digestion studies indicated that the genomic family, in the majority, followed the arrangement of the sequenced clone, with minor restriction cleavage variations compatible with a few base changes. Common restriction sites external to the 1.9 kb sequence were mapped, and hybridization of segments of the cloned sequence indicated the 1.9 kb DNA was itself not tandemly repeated. Kpn I bands which were homologous to the sequence contained specific regions of the repeat, and the molecular weight of these larger fragments could be simply explained. Mapping of common external restriction sites indicated that in some but not all cases the repeat could be organized in larger defined blocks of greater than or equal to 5.5 kb. In some instances, flanking regions adjacent to the repeat may contain common DNA elements such as other repeated DNA sequences, or possibly rearranged segments of the 1.9 kb sequence. It is suggested that although the 1.9 kb sequence is not strictly contiguous, at least some of these repeated sequences in the human genome are arranged in clustered or intercalary arrays. A region of the 1.9 kb sequence hybridized to a mouse repeated DNA, indicating homology beyond the primates.  相似文献   

14.
A family of dispersed repeats longer than 7 kilobase pairs (kbp) has been identified in the very large genome of Lilium henryi, and two subregions cloned. Initially a rapidly reannealing probe (C0t<1 M s) was prepared by hydroxyapatite chromatography. Half the copies of all sequences repeated 15000 times per genome are expected to reanneal by this C0t value. The probe hydridized to abundant fragments of 2, 5, and 7 kbp released from genomic DNA by Bam HI digestion. Twelve 2-kb fragments and ten 5-kb sequences were cloned into pBR322. Restriction mapping of the two sets of clones showed individual members to be quite similar. Length variation was no more than 200 base pairs (bp) between repeats, and consensus sites were present on 80%–90% of occasions. In situ hybridization using representative 2-kbp and 5-kbp clones showed each sequence to be dispersed throughout all chromosomal regions. Studies on the genomic organization suggested that the 2-kbp and 5-kbp sequences are usually adjacent, and that occasional absence of the internal Bam HI site results in the release of the 7-kbP fragment. There are at least 13000 copies of the full repeat per L. henryi genome, thus accounting for approximately 0.3% of the total of 32 million kbp.  相似文献   

15.
In Xenopus laevis eight tRNA genes are located in a 3.18 kb tandemly repeated unit. There are 150 copies of the unit at a single locus near the long arm telomere of one of the acrocentric chromosomes in the 14–17 group. Two additional classes of tRNA gene-containing repeats have been isolated (defined by clones p3.1 and p3.2) that have structures related to that of the 3.18 kb unit. Using in situ hybridization at the electron microscopic level, the p3.2 repeats are found clustered at a single locus in the subtelomeric region on one of the submetacentric chromosomes, whereas the p3.1 repeats are clustered at a locus indistinguishable from that containing the 3.18 kb repeats. This suggests that these tDNA tandem repeats can diverge in sequence from each other without being at distantly separated loci.  相似文献   

16.
Characterization of human 5S rRNA genes.   总被引:5,自引:0,他引:5       下载免费PDF全文
  相似文献   

17.
P. J. Pukkila  C. Skrzynia 《Genetics》1993,133(2):203-211
We have examined the stability of the tandemly repeated genes that encode the ribosomal RNA in Coprinus cinereus. These genes are contained within two linked HindIII fragments in a 3.0-Mb chromosome. We monitored the size of these fragments in both mitotic and meiotic segregants using the contour-clamped homogeneous electric field (CHEF) method. No length changes were observed in the smaller HindIII fragment (100 kb; 10 repeats) among the DNAs prepared from 46 asexual spore derivatives (oidia) or 128 meiotic segregants (basidiospores from 32 tetrads). However, the larger HindIII fragment (1100 kb; 120 repeats) did exhibit variability. Substantial changes, involving up to 40% of the larger HindIII fragment were recorded in 7 of 46 oidial isolates (including 4 of 22 transformed derivatives). To learn if the changes were confined to the vegetative portion of the life cycle, we examined transmission of HindIII variants through three crosses. In the first two crosses (16 tetrads total), no changes were observed in the large HindIII fragment. However, in the third cross (16 tetrads), each tetrad showed at least one alteration. In half of the tetrads from the third cross, the altered patterns segregated 2:2, suggesting that the changes occurred after mating but prior to premeiotic DNA replication. We conclude that breakage and rejoining reactions within the rDNA are frequent and are not confined to any particular stage of the life cycle. It also appears that certain repeats are sheltered from these events. Finally, marked differences in rDNA stability were observed in the crosses analyzed.  相似文献   

18.
Satellite sequences of the VicTR-B family are specific for the genus Vicia (Leguminosae), but their abundance varies among the species, being the highest in Vicia sativa and Vicia grandiflora. In this study, we have sequenced multiple randomly cloned VicTR-B fragments from these two species and analyzed their sequence variability, periodicity, and chromosomal localization. We have found that V. sativa VicTR-B sequences are homogeneous with respect to their nucleotide sequences and periodicity (monomers of 38 bp), whereas V. grandiflora repeats are considerably more variable, occurring in at least four distinct sequence subfamilies. Although the periodicity of 38 bp was conserved in most of the V. grandiflora sequences, one of the subfamilies was composed of higher-order repeats of 186 bp, which originated from a pentamer of the basic repeated unit. Individual VicTR-B subfamilies were preferentially located in either intercalary or subtelomeric regions of chromosomes. Interestingly, two V. grandiflora subfamilies with the highest similarity to V. sativa VicTR-B sequences were located in intercalary heterochromatic bands, showing similar chromosomal distribution as the majority of VicTR-B repeats in V. sativa. The other two V. grandiflora subfamilies showing a considerable divergence from V. sativa sequences were found to be accumulated at subtelomeric regions of V. grandiflora chromosomes.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.Communicated by I. Schubert  相似文献   

19.
Plasmid and λ DNA molecules of between 2.2 and 48.5 kb pairs can be solubilised in n-hexane containing the surfactant sodium dioctyl sulfosuccinate (AOT) and aqueous buffers. Linear λ phage DNA fragments (2.2-23.1 kb pairs) and intact λ bio 1 DNA (48.5 kb pairs) are efficiently cleaved by Bam HI and Em RI in systems containing 100 mM AOT. Under these conditions, λ bio 1 DNA undergoes regioselective restriction by Hind III at only one site but is completely cleaved when the surfactant concentration is lowered to 50 mM. Covalent closed circular plasmid DNA (pUC8, 2.73 kb pairs) is only partially linearised by Eco RI and Bam HI in reversed micelles; Hae II cleavage affords both complete and partial restriction fragments. The results suggest that the tertiary structures adopted by substrate DNA in reversed micelles influence the availability of restriction sites.  相似文献   

20.
An electron microscopic analysis of the DNA sequence organization in the soybean genome is reported. This analysis employed the gene 32 proteinethidium bromide spreading technique, a procedure which produces striking contrast between double and single-stranded DNA regions. To investigate the arrangement of repetitive sequences differing in genomic frequency, three kinetic fractions of 5 kb DNA fragments were isolated by reassociation and hydroxyapatite chromatography. Renatured structures in each fraction were then visualized in the electron microscope. The majority of repeated sequences, irrespective of frequency, were shown to be relatively non-divergent, to exceed 1.5 kbp in length (number-average), and to be organized primarily into long regularly repeating tandem or clustered arrays. Duplex regions >5 kbp were commonly visualized. A small fraction of low frequency repeats (<100 copies per genome), however, was observed to have a distinctly different form of arrangement. These repeats averaged 0.2 kbp in length, contained divergent sequences, and were contiguous to single copy DNA sequences having an average length of 1.15 kbp. Repeats which flanked a given single copy sequence did not appear to be homologous. Neither short clustered permuted repeats nor interspersion of repeats which differed significantly in reiteration frequency were found to be major features of soybean genome organization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号