首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional role of epidermal growth factor (EGF) in epithelium-derived human colonic carcinoma cells was investigated by transfection with plasmid pUCDS3, which contained synthetic human EGF encoding sequences, into two human colonic carcinoma cell types with dissimilar phenotypic properties: the moderately differentiated and growth factor-responsive Moser and the highly metastatic KM12SM cells. The Moser cells exhibited a proliferative response to treatment with exogenous EGF, while the KM12SM cells did not. The constitutive expression of the human EGF gene in these colonic carcinoma cell types resulted in elevated expression of EGF mRNA, with concurrent production and secretion of a large amount of EGF, and downmodulation of transforming growth factor-alpha (TGF-alpha) secretion. Growth stimulation and down-modulation of both high and low affinity EGF receptors were observed in the EGF-transfected Moser clones. Results of experiments using anti-EGF and anti-EGF-receptor antibody to block the proliferation of EGF-transfected Moser clones suggested that autocrine stimulatory mechanisms involving both EGF and TGF-alpha were operative in these cells. By comparison, a growth-inhibitory effect, with no apparent EGF receptor modulation, was observed in the EGF-transfected KM12SM clones. Both the parental and EGF-transfected KM12SM clones possessed fewer EGF receptors than the Moser cells, and anti-EGF or anti-EGF-receptor antibody did not affect the cells' growth properties. These results suggested that the mechanisms of growth inhibition in the EGF-transfected KM12SM clones were non-autocrine or intracellular in nature. Thus, constitutive expression of the human EGF gene in two phenotypically different, epithelium-derived human colonic carcinoma cells resulted in divergent altered growth characteristics.  相似文献   

2.
The purpose of this phospho-proteomics study was to demonstrate the broad analysis of cellular protein phosphorylation in cells and tissue as a means to monitor changes in cellular states. As a cancer model, human tumor-derived A431 cells known to express the epidermal growth factor receptor (EGFR) were grown as cell cultures or xenograft tumors in mice. The cells and tumor-bearing animals were subjected to treatments including the EGFR-directed protein kinase inhibitor PK166 and/or EGF stimulation. Whole cell/tissue protein extracts were converted to peptides by using trypsin, and phosphorylated peptides were purified by an affinity capture method. Peptides and phosphorylation sites were characterized and quantified by using a combination of tandem mass spectroscopy (MS) and Fourier transform MS instrumentation (FTMS). By analyzing roughly 106 cell equivalents, 780 unique phosphopeptides from approx 450 different proteins were characterized. Only a small number of these phosphorylation sites have been described previously in literature. Although a targeted analysis of the EGFR pathway was not a specific aim of this study, 22 proteins known to be associated with EGFR signaling were identified. Fifty phosphopeptides were found changed in abundance as a function of growth factor or drug treatment including novel sites of phosphorylation on the EGFR itself. These findings demonstrate the feasibility of using phospho-proteomics to determine drug and disease mechanisms, and as a measure of drug target modulation in tissue.  相似文献   

3.
4.
Carcinoma cells frequently coexpress transforming growth factor (TGF)-alpha and its receptor, the epidermal growth factor (EGF) receptor, implicating an autocrine function of carcinoma-derived TGF-alpha. Using a monoclonal antibody (425) to the EGF-receptor, we investigated the role of exogenous and tumor cell-derived EGF/TGF-alpha mitogenic activities in proliferation of cell lines derived from solid tumors. Monoclonal antibody 425 was chosen for these studies because it inhibits binding of EGF/TGF-alpha to the EGF-receptor and effectively blocks activation of the EGF-receptor by EGF/TGF-alpha. Seven malignant cell lines originating from carcinomas of colon, pancreas, breast, squamous epithelia, and bladder expressed surface EGF-receptor and secreted EGF/TGF-alpha-like mitogenic activities into their tissue culture media. All cell lines were maintained in a defined medium free of exogenous EGF/TGF-alpha. EGF and TGF-alpha added to the culture medium stimulated proliferation of five cell lines to comparable levels. EGF/TGF-alpha-dependent proliferation was significantly reduced by addition of MAb 425 to culture media. In addition, monoclonal antibody 425 reduced proliferation of the five EGF/TGF-alpha responsive cell lines in the absence of exogenous EGF/TGF-alpha. Antiproliferative effects induced by monoclonal antibody 425 were reversible and could be overcome by addition of EGF to culture media. Our results indicate that tumor-derived EGF-receptor-reactive mitogens can promote proliferation of carcinoma cells in an autocrine fashion.  相似文献   

5.
Cyclooxygenase-2 (COX-2) has been suggested to be associated with carcinogenesis. Recently, many studies have shown increased expression of COX-2 in a variety of human malignancies, including hepatocellular carcinoma (HCC). Therefore, it becomes important to know more about what determines COX-2 expression. In this work, we have studied the effect of PPARdelta activation on COX-2 expression using a selective agonist (GW501516) in human hepatocellular carcinoma (HepG2) cells. Activation of PPARdelta resulted in increased COX-2 mRNA and protein expression. The mechanism behind the induction seems to be increased activity of the proximal promoter of the COX-2 gene, spanning nucleotides -327 to +59. The increased COX-2 protein expression and promoter activity induced by the GW501516 was also confirmed in the monocytic cell line THP-1. Induced levels of COX-2 have previously been associated with resistance to apoptosis and increased cell proliferation in many cell types. In HepG2 cells, we observed a dose-dependent increase in cell number by GW501516 treatment for 72h. The levels of PCNA, used as an indicator of cell division were induced, and the cell survival promoting complex p65 (NF-kappaB) was phosphorylated under GW501516 treatment. We conclude that PPARdelta activation in HepG2 cells results in induced COX-2 expression and increased cellular proliferation. These results may suggest that PPARdelta plays an important role in the development of HCC by modulating expression of COX-2.  相似文献   

6.
Liver progenitor cells rise as potential critical players in hepatic regeneration but also carcinogenesis. It is therefore mandatory to define the signals controlling their activation and expansion. Recently, by using a novel in vitro model of oval cell lines expressing a mutant tyrosine kinase-inactive form of c-Met we demonstrated that autocrine c-Met signalling plays an essential role in promoting oval cell survival. Here, we investigated the significance of the epidermal growth factor receptor (EGFR) signalling in oval cell proliferation and survival, as well as a potential functional crosstalk between the c-Met and the EGFR pathways. We found an autocrine activation of the EGFR-triggered pathway in Metflx/flx and Met−/− oval cells as judged by constitutive expression of the EGFR ligands, transforming growth factor-alpha (TGF-α) and heparin-binding EGF like growth factor (HB-EGF), and activation of EGFR. On the other hand, treatment with AG1478, a specific inhibitor of EGFR, effectively blocked endogenous and EGF-induced proliferation, while increased serum withdrawal and transforming growth factor-beta (TGF-β)-induced apoptosis. These results suggest that constitutively activated EGFR might promote oval cell proliferation and survival. We found that hepatocyte growth factor (HGF) does not transactivate EGFR nor EGF transactivates c-Met. Furthermore, treatment with AG1478 or EGFR gene silencing did not interfere with HGF-mediated activation of target signals, such as protein kinase B (AKT/PKB), and extracellular signal-regulated kinases 1/2 (ERK 1/2), nor did it have any effect on HGF-induced proliferative and antiapoptotic activities in Metflx/flx cells, showing that HGF does not require EGFR activation to mediate such responses. EGF induced proliferation and survival equally in Metflx/flx and Met−/− oval cells, proving that EGFR signalling does not depend on c-Met tyrosine kinase activity. Together, our results provide strong evidence that in normal, untransformed oval cells, c-Met and EGFR represent critical molecular players to control proliferation and survival that function independent of one another.  相似文献   

7.
8.
Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca2+ channel expression.  相似文献   

9.
10.
EGF induces cell cycle arrest of A431 human epidermoid carcinoma cells   总被引:4,自引:0,他引:4  
The human carcinoma cell line A431 is unusual in that physiologic concentrations of epidermal growth factor (EGF) inhibit proliferation. In the presence of 5-10 nM EGF proliferation of A431 cells is abruptly and markedly decreased compared to the untreated control cultures, with little loss of cell viability over a 4-day period. This study was initiated to examine how EGF affects the progression of A431 cells through the cell cycle. Flow cytometric analysis of DNA in EGF-treated cells reveals a marked change in the cell cycle distribution. The percentage of cells in late S/G2 increases and early S phase is nearly depleted. Since addition of the mitotic inhibitor vinblastine causes accumulation of cells in mitosis and prevents reentry of cells into G1, it is possible to distinguish between slow progression through G1 and G2 and blocks in those phases. When control cells, not treated with EGF, are exposed to vinblastine, the cells accumulate mitotic figures, as expected, and show progression into S, thus diminishing the number of cells in G1. In contrast, no mitotic figures are found among the EGF-treated cells in the presence or absence of vinblastine, and progression from G1 into S is not observed, as the number of cells in G1 remains constant. These results suggest that there are two EGF-induced blocks in cell cycle transversal; one is in late S and/or G2, blocking entry into mitosis, and the other is in G1, blocking entry into S phase. After 24 hours of EGF treatment, DNA synthesis is reduced to less than 10% compared to untreated controls as measured by the incorporation of [3H]thymidine or BrdU. In contrast, protein synthesis is inhibited by about twofold. Although inhibition of protein synthesis is less extensive, it occurs 6 hours prior to an equivalent inhibition of DNA synthesis. The rapid decrease in protein synthesis may result in the subsequent cell cycle arrest which occurs several hours later.  相似文献   

11.
Several malignancies over-express the epidermal growth factor receptor, ligation of which results in cellular differentiation and multiplication. Mononuclear phagocytes secrete this cytokine and its receptor has been detected on microglial cells. This communication describes the expression (and its regulation) of epidermal growth factor receptor (EGFR) on U937 cells. We have shown that a few are EGFR-positive, with expression being up regulated by interleukin 6 (IL-6). Also, when cultured in the presence of serum with the monoclonal anti-EGFR, ICR62, U937s showed a reduced growth rate. By contrast, ICR9 caused a significant increase in cellular proliferation. Both antibodies induced cycle arrest in late G(1)/S phase. When the cells were cultured in the absence of serum, low antibody concentration (10 microg/ml) showed an early inhibitory effect on cell proliferation. By contrast, at high antibody concentrations (50 micro/ml), ICR62 significantly increased the proliferation of U937 cells. We suggest that these results provide indirect evidence for an autocrine action of EGF on U937 cells.  相似文献   

12.
13.
14.
The stimulation of epidermal proliferation by a specific protein (EGF)   总被引:25,自引:0,他引:25  
  相似文献   

15.
Nasopharyngeal carcinoma (NPC) is a common cancer in South China but is rare in other parts of the world. A novel NPC-related gene was isolated by location candidate cloning strategy, whose expression was down-regulated in NPC. This gene was designated human NGX6 (Genbank accession AF188239) and encoded a predicted protein of 338 amino acids that harbors an EGF-like domain. The effects of NGX6 on cells from human NPC cell line HNE1 were investigated. The cells transfected with NGX6 had a markedly high expression of NGX6, leading to significant decrease in cell proliferation and the capability to form colonies in soft agar, delaying the G0-G1 cell cycle progression. Flow cytometry assay indicated that the expression of cyclin D1 significantly decreased in NGX6-transfected HNE1 cells as well as cyclin A and E. There was a delay in tumor formation and a dramatic reduction in tumor size when cells transfected with NGX6 were injected into nude mice. In another way, we found NGX6 played a negative role in EGFR Ras/Mek/MAPK pathway. We propose that NGX6, as an EGF-like domain gene, could delay cell cycle G0-G1 progression and thus inhibit cell proliferation by negatively regulating EGFR pathway in NPC cells and down-regulating the expression of cyclin D1 and E.  相似文献   

16.
17.
Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca(2+) levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca(2+) channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca(2+) channel expression.  相似文献   

18.
After binding of epidermal growth factor (EGF), the EGF receptor (EGFR) becomes autophosphorylated via tyrosine. The ligand-activated receptor is internalized by endocytosis and subsequently degraded in the lysosomal pathway. To follow EGFR activation after EGF stimulation, we generated antisera to the EGFR phosphotyrosine sites pY992 and pY1173. The SH2 region of Shc binds to both these sites. Both antisera identified EGFR after EGF binding and did not crossreact with the unactivated receptor. The intracellular distribution of phosphorylated EGFR after ligand binding was traced by two-color immunofluorescence confocal microscopy and immunoelectron microscopy. Before EGF stimulation EGFR was primarily located along the cell surface. When internalization of activated EGFR was inhibited by incubation with EGF on ice, Y992- and Y1173-phosphorylated EGFR were located along the plasma membrane. Ten minutes after internalization at 37C, Y992- and Y1173-phosphorylated EGFR were almost exclusively located in early endosomes, as shown by co-localization with EEA1. Immunoelectron microscopy confirmed that phosphorylated EGFR was located in intracellular vesicles resembling early endosomes. After EGF stimulation, the adaptor protein Shc redistributed to EGFR-containing early endosomes. Our results indicate that EGFR activation of Shc via tyrosine-phosphorylated Y992 and Y1173 occurred in early endocytic compartments, and support a role for membrane trafficking in intracellular signaling.  相似文献   

19.
A comparative study was undertaken with human and rat liver of a fraction reported to have growth inhibitory activity when prepared from rat liver. Fractions which were soluble in 70% ethanol and insoluble in 87% ethanol were prepared from liver cytosols. Electrophoretic analysis under denaturing conditions indicated that there were several quantitative or qualitative differences in the fractions from the two species. Fractions from both human and rat liver were found to be inhibitory for the incorporation of 3H-thymidine into DNA of foetal chick hepatocytes. Under conditions in which the rat fraction inhibited precursor incorporation into DNA of rat liver epithelial cells there was not a significant inhibitory effect with the fraction from human liver. DNA synthesis in a rat hepatoma cell line was not significantly inhibited by preparations from either species. The data suggested that corresponding fractions from both rat and human liver could have inhibitory effects on precursor incorporation into DNA but the magnitude of the effects and target cell specificity may differ.  相似文献   

20.
Dysfunction of epidermal growth factor receptor (EGFR) signalling plays a critical role in the oncogenesis of non–small-cell lung cancer (NSCLC). Here, we reported the natural product, licochalcone A, exhibited a profound anti-tumour efficacy through directly targeting EGFR signalling. Licochalcone A inhibited in vitro cell growth, colony formation and in vivo tumour growth of either wild-type (WT) or activating mutation EGFR-expressed NSCLC cells. Licochalcone A bound with L858R single-site mutation, exon 19 deletion, L858R/T790M mutation and WT EGFR ex vivo, and impaired EGFR kinase activity both in vitro and in NSCLC cells. The in silico docking study further indicated that licochalcone A interacted with both WT and mutant EGFRs. Moreover, licochalcone A induced apoptosis and decreased survivin protein robustly in NSCLC cells. Mechanistically, we found that treatment with licochalcone A translationally suppressed survivin through inhibiting EGFR downstream kinases ERK1/2 and Akt. Depletion of the translation initiation complex by eIF4E knockdown effectively inhibited survivin expression. In contrast, knockdown of 4E-BP1 showed the opposite effect and dramatically enhanced survivin protein level. Overall, our data indicate that targeting survivin might be an alternative strategy to sensitize EGFR-targeted therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号