首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An enzyme which catalyzes the synthesis of thiamin triphosphate from thiamin diphosphate (TDP), thiamindiphosphate kinase (ATP:thiamin diphosphate phosphotransferase) [EC 2.7.4.15], was detected in animal tissues. The enzyme was partially purified (150-fold) from the cytosol fraction of guinea pig brain. The enzyme reaction required free (not protein-bound) TDP, ATP, Mg2+, and a cofactor, which is a low molecular weight and heat-stable compound. The enzyme activity was optimal at pH 11 and at 25 degrees C. A stoichiometric transfer of 32P from [gamma-32P]ATP to TDP was demonstrated. Km values for TDP and ATP were calculated to be 1.1 mM and 10 microM, respectively, and Vmax was 868 nmol/mg of protein/hr. The enzyme was found solely in the cytosol fraction of guinea pig brain and was also detectable in the skeletal muscle and heart. These results provide strong evidence for the existence of TDP kinase in animal tissues.  相似文献   

2.
We showed previously that cytosolic adenylate kinase (AK1) purified from pig skeletal muscle catalyzes in vitro formation of thiamin triphosphate (TTP) from thiamin diphosphate (TDP) and ADP in addition to ATP formation from ADP [Shikata, H. et al. (1989) Biochem. Int. 18, 933-942]. To obtain evidence for in vivo synthesis of TTP by AK1, changes in TTP content and AK1 activity were determined in chicken skeletal muscle during development after hatching. Thiamin phosphate metabolism in chicken skeletal muscle was also studied. i) An extremely high TTP content, 81% of total thiamin (thiamin plus thiamin phosphates), was detected in the white (fast-twitch) muscle of adult normal chicken (5th to 9th month) compared with a relatively high TTP content of 31% in the red (slow-tonic) muscle. Since approximately equivalent amounts of total thiamin were present in the two types of muscle, the ratio of TTP to TDP was high (5.0) in the white muscle and low (0.41) in the red muscle. ii) Rabbit anti-chicken AK1 antiserum against the purified chicken cytosolic AK1 preparation was obtained. Both AK1 activity and TTP-synthesizing activity in crude cytosol fraction of adult chicken white muscle were inhibited in parallel by the antiserum. iii) In the white muscle of normal chicken, the TTP content and AK1 activity responsible for forming either ATP or TTP were increased in a parallel manner up to day 16 after hatching, after which both remained constant. In the red muscle, on the other hand, both the TTP content and the AK1 activity were low in comparison with those in the white muscle, and were almost constant after hatching.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
In relation to a high activity of thiamin diphosphate (TDP) kinase (Koyama, S. et al. (1985) Biochem. Int. 11, 371-380) in the skeletal muscle of pigs and guinea pigs, the content of thiamin phosphate esters in tissues of these animals has been determined by the method of high-performance liquid chromatography. An extremely high concentration of thiamin triphosphate (TTP), 69.2% of the total thiamin (26.1 nmol/g wet weight), was detected in adult pig skeletal muscles. One extreme case contained TTP as 88.7% of the total thiamin (19.6 nmol/g wet weight). TTP in pig skeletal muscle was found solely in cytosol fraction. This is the first report showing an unusually high level of TTP in mammals and may give a clue as to the physiological functions of TTP.  相似文献   

4.
: Concentrations of thiamin (unphosphorylated), thiamin monophosphate (TMP), thiamin diphosphate (TDP), and thiamin triphosphate (TTP) were measured in three regions of the brain of seven pairs of lambs. The lambs were maintained on a thiamin-free synthetic diet for 2, 3, or 4 weeks. Controls were pair-fed and supplemented with thiamin. The three brain regions were: (1) dorso-lateral aspect of the cortex [common site for lesions of polioencephalomalacia (PEM)]; (2) pyriform lobe of the cortex (no PEM lesions are found here); (3) white matter of the internal capsule (no PEM lesions found here). The concentration of TTP in all three sections of brain was maintained at control values for up to 4 weeks on the thiamin-deficient diet. TDP concentration decreased to 22% of control values in both regions of grey matter after 4 weeks on the diet. Unphosphorylated thiamin and TMP decreased to a smaller extent than TDP.  相似文献   

5.
Thiamin and its mono- (TMP), di- (TDP) and triphosphate (TTP) were assayed in adult human whole blood using high-performance liquid chromatography (HPLC). TDP and TTP were detected in red blood cells (RBC), but not in plasma. After incubation with 20 microM thiamin and 5 mM glucose for 2 h, the TDP and TTP contents of RBC increased from 111 to 222 and 0.6 to 2.2 nmol/l of packed RBC, respectively, suggesting enzymatic conversion of thiamin to TDP and then to TTP. Thiamin pyrophosphokinase (TPK, EC 2.7.6.2) had not been isolated before from human materials, nor had cytosolic adenylate kinase (AK1, EC 2.7.4.3) in human RBC been demonstrated to catalyze the phosphorylation of TDP to TTP, although AK1 from pig and chicken skeletal muscle possess TTP-synthesizing activity. TPK and AK1 in a human RBC lysate were therefore purified by a series of the conventional techniques. The specific activity of the purified TPK, which was obtained as a single protein, was 720 nmol TDP formed/mg protein per h at 37 degrees C. A partially purified AK1 preparation catalyzed the formation of TTP from TDP (specific activity, 170 nmol/mg protein per h at 37 degrees C) in addition to its proper reaction to form ATP from ADP. After incubation of the purified TPK and AK1 with 20 microM thiamin in the presence of ATP, ADP and Mg2+ at 37 degrees C for 48 h, the amounts of TDP and TTP synthesized were 465 and 54.0 pmol/250 microliters reaction mixture, respectively. Neither TDP nor TTP was formed when TPK was omitted from the reaction mixture and an omission of AK1 resulted in the formation of TDP alone. These results indicate that thiamin is converted to TDP by TPK and, subsequently, to TTP by AK1 in human RBC.  相似文献   

6.
Adenylate kinase isozyme 1 (AK1) catalyzes thiamin triphosphate (TTP) formation from thiamin diphosphate (TDP) and ADP. The properties of the TTP-synthesizing activity of purified AK1 from porcine skeletal muscle were studied. The activity was found to require TDP, ADP, and Mg2+, and ATP was only 14.4% as active as ADP. Thiamin monophosphate (TMP) and thiamin were not utilized as substrates. ADP was specific as a phosphate donor; and CDP, UDP, and GDP supported TTP formation at rates less than 1% of that with ADP. Optimal pH and temperature for the TTP-synthesizing activity were 10.0 and 37 degrees C, respectively. The activity showed saturation kinetics for both substrates, and the Km values for TDP and ADP were calculated to be 0.83 mM and 43 microM, respectively. The enzyme catalyzed the reverse reaction (TTP + AMP----TDP + ADP) and stoichiometry between TTP and TDP was demonstrated in the forward and reverse reactions.  相似文献   

7.
Vitamin B1 or thiamin is one of the B vitamins. All B vitamins help the body to convert food (carbohydrates) into fuel (glucose), which produces energy. The B vitamins are necessary for healthy skin, eyes, hair, and liver. It also could help the nervous system function properly, and is necessary for brain functions. Drug interactions with protein can affect the distribution of the drug and eliminate the drug in living systems. In this study, the binding of thiamine hydrochloride (vitamin B1) to bovine serum albumin (BSA) was evaluated using a new proposed vitamin B1 (thiamine)-selective membrane electrode under various experimental conditions, such as pH, ionic strength, and protein concentration; in addition molecular modeling was applied as well. The binding isotherms plotted based on potentiometric data and analyzed using the Wyman binding potential concept. The apparent binding constant was determined and used for the calculation of intrinsic Gibbs free energy of binding. According to the electrochemical and molecular docking results, it can be concluded that the hydrophobic interactions and hydrogen binding are major interactions between BSA and vitamin B1.  相似文献   

8.
Thiamin (Vitamin B(1)) transport in Escherichia coli occurs by the superfamily of traffic ATPases in which the initial receptor is the periplasmic binding protein. We have cloned the periplasmic thiamin-binding protein (TBP) of the E. coli periplasmic thiamin transport system and purified the overexpressed protein to apparent homogeneity. A subsequent biochemical characterization demonstrates that TBP is a 34.205kDa monomer. TBP also contains one tightly bound thiamin species [thiamin, thiamin monophosphate (TMP), or thiamin diphosphate (TDP)] per monomer (K(D)=0.8 microM) when isolated under conditions that would remove any loosely bound ligands. We also demonstrate that thiamin is readily exchangeable in the presence of exogenous thiamin with a k(off)=0.12s(-1). The biochemical characteristics of the overexpressed, plasmid-derived TBP are indistinguishable from those determined for endogenous TBP purified from E. coli. The overexpression and purification of TBP that we present here allows the rapid isolation of large amounts of pure protein that are required for further mechanistic and structural studies and demonstrates a vast improvement over previously reported purifications.  相似文献   

9.
The intra- and extracellular contents of vitamins were studied in the course of submerged cultivation of the higher basidial mushroom Pleurotus ostreatus (Jacq.: Fr.) Kummer st. IMBF-1300 on liquid nutrient media. This strain was found to be autotrophic in respect of thiamin (vitamin B1), riboflavin (vitamin B2), niacin (vitamin B5), pyridoxine (vitamin B6) and biotin (vitamin B7), but it failed to synthesize cyanocobalamin (vitamin B12). The composition and pH of the culture medium, containing such complex biostimulating supplements as maize extract and concentrated potato sap noticeably influence the contents of vitamins B1, B5 and B7 in the mycelium, and to a less degree they change the level of the intracellular biosynthesis of vitamins B2 and B6. Higher excretion of vitamins B5, B7 and especially B6 was observed on the semisynthetic media during the postexponential growth. Under experimental conditions vitamins B1 and B2 were accumulated only in the cells. The dry mycelium of P. ostreatus obtained by submerged cultivation on liquid media is a valuable source of B vitamins and, especially, of niacin. Thus the oyster mushroom and other edible mushrooms can be put at one of the top places among food-stuffs by the content of niacin.  相似文献   

10.
Gel filtration and equilibrium dialysis demonstrated that the hyaloplasmic fraction of the liver of B1-deficient rats does not practically bind C-TDP in vitro. An addition of the excess of non-labelled coenzyme does not increase the transketolase activity. The data obtained suggest that transketolase activation in the hyaloplasmic fraction of the liver of B1-deficient rats after administration of thiamine in vivo is due to stimulation of the additional synthesis of the enzyme protein rather than to the saturation of the free apoenzyme with newly-formed TDP. In vivo and in vitro studies suggest that the hyaloplasmic fraction of the liver of B1-deficient rats contains no free apoenzyme of transketolase.  相似文献   

11.
While thiamin and riboflavin in breast milk have been analyzed for over 50 years, less attention has been given to the different forms of each vitamin. Thiamin-monophosphate (TMP) and free thiamin contribute to total thiamin content; flavin adenine-dinucleotide (FAD) and free riboflavin are the main contributors to total riboflavin. We analyzed milk collected at 2 (n = 258) or 6 (n = 104), and 24 weeks (n = 362) from HIV-infected Malawian mothers within the Breastfeeding, Antiretrovirals and Nutrition (BAN) study, randomly assigned at delivery to lipid-based nutrient supplements (LNS) or a control group, to investigate each vitamer’s contribution to total milk vitamin content and the effects of supplementation on the different thiamin and riboflavin vitamers at early and later stages of lactation, and obtain insight into the transport and distribution of these vitamers in human milk. Thiamin vitamers were derivatized into thiochrome-esters and analyzed by high-performance liquid-chromatography-fluorescence-detection (HPLC-FLD). Riboflavin and FAD were analyzed by ultra-performance liquid-chromatography-tandem-mass-spectrometry (ULPC-MS/MS). Thiamin-pyrophosphate (TPP), identified here for the first time in breast milk, contributed 1.9–4.5% to total thiamin. Free thiamin increased significantly from 2/6 to 24 weeks regardless of treatment indicating an active transport of this vitamer in milk. LNS significantly increased TMP and free thiamin only at 2 weeks compared to the control: median 170 versus 151μg/L (TMP), 13.3 versus 10.5μg/L (free thiamin, p<0.05 for both, suggesting an up-regulated active mechanism for TMP and free thiamin accumulation at early stages of lactation. Free riboflavin was consistently and significantly increased with LNS (range: 14.8–19.6μg/L (LNS) versus 5.0–7.4μg/L (control), p<0.001), shifting FAD:riboflavin relative amounts from 92–94:6–8% to 85:15%, indicating a preferred secretion of the free form into breast milk. The continuous presence of FAD in breast milk suggests an active transport and secretion system for this vitamer or possibly formation of this co-enymatic form in the mammary gland.  相似文献   

12.
13.
Human erythrocyte transketolase could be resolved from thiamin diphosphate (TDP) by acidification of the ammonium sulfate precipitate to pH 3.5, but not by other tested procedures. Resolution was 98% by chemical measurement of residual thiamin and 95% by residual enzyme activity. Reconstitution of the resolved preparation by incubation with TDP was dependent upon TDP concentration, duration, temperature, and the presence of dithiothreitol. At low TDP concentrations, 1 h was required for maximum activation; kinetic analysis then yielded an apparent Km value for TDP of 65 nM (SD 14 nM) from 100 erythrocyte lysates and similar values for reconstituted resolved preparations previously purified 400-fold and 10,000-fold. Velocity data obtained by transketolase assays in which the TDP was added to resolved preparations simultaneously with substrates yielded an apparent Km value for TDP of 2.3 microM (SD 1.6 microM) from 114 erythrocyte lysates and similar values for purified preparations. The recovery of activity following resolution and reconstitution ranged from 21 to 60% from lysates and 38 to 70% from purified preparations. Residual ammonium sulfate up to 4.9 mM decreased the apparent Km value for TDP, while a concentration of 11.3 mM increased the value in a manner competitive with TDP and with an apparent Ki value of 2.3 mM. The spectrophotometric assay of transketolase activity was greatly affected by storage of frozen solutions of the substrate ribose 5-phosphate.  相似文献   

14.
In this study a protocol for the analysis of thiamin and thiamin coenzymes in whole blood was developed. Thiamin and its coenzymes are analyzed by reversed phase liquid chromatography (RPLC), precolumn derivatisation with alkaline potassium ferricyanide and fluorescence detection, all at pH 10. Under these relatively high pH conditions the detectability of the analytes and the robustness of the method were substantially improved. The use of a high pH resistant RPLC column was a crucial step in developing this analysis method. Reproducibility, linearity, recovery, detection limit and column robustness were investigated. The within-batch CV was <2.5%, the between-batch CV <4.5%. The method was linear far above the physiological relevant concentration level. Recovery was almost 100% on an average. The limit of quantification was 1 nmol/l. The robustness of the RPLC column proved to be very high. Up to 1500 injections hardly any substantial changes in retention times and efficiency were observed. In summary: Using a high pH resistant RPLC column resulted in a robust, sensitive and precise method for the analysis of total Vitamin B1 and especially of TDP.  相似文献   

15.
Reactivity of thiamin monophosphate (TMP) as calf intestinal alkaline phosphatase substrate in model transformations is lower comparing with thiamin diphosphate (TDP) reactivity. Under these conditions alkaline phosphatase catalyzes TDP, ADP and AMP hydrolysis approximately at same rate. It was shown that TDP competes with p-nitrophenyl phosphate more effectively than TMP for the binding in the active site. At pH 8.5 and 30 degrees C Km values are as follows: (5.2 +/- 1.6) x 10(-3) M for TMP and (3.0 +/- 0.8) x 10(-4) M for TDP. Under the same conditions the Vmax/Km value for TDP hydrolysis is 53 times higher than the one for corresponding reaction of TMP. It was suggested that positively charged thiazolium ion of TMP interacts with the nearest environment at the active center and by this way reduces enzyme activity.  相似文献   

16.
Mammalian cells obtain vitamin B1 (thiamin) from their surrounding environment and convert it to thiamin pyrophosphate (TPP) in the cytoplasm. Most of TPP is then transported into the mitochondria via a carrier-mediated process that involves the mitochondrial thiamin pyrophosphate transporter (MTPPT). Knowledge about the physiological parameters of the MTPP-mediated uptake process, MTPPT targeting and the impact of clinical mutations in MTPPT in patients with Amish lethal microcephaly and neuropathy and bilateral striatal necrosis are not fully elucidated, and thus, were addressed in this study using custom-made 3H-TPP as a substrate and mitochondria isolated from mouse liver and human-derived liver HepG2 cells. Results showed 3H-TPP uptake by mouse liver mitochondria to be pH-independent, saturable (Km = 6.79±0.53 µM), and specific for TPP. MTPPT protein was expressed in mouse liver and HepG2 cells, and confocal images showed a human (h)MTPPT-GFP construct to be targeted to mitochondria of HepG2 cells. A serial truncation analysis revealed that all three modules of hMTPPT protein cooperated (although at different levels of efficiency) in mitochondrial targeting rather than acting autonomously as independent targeting module. Finally, the hMTPPT clinical mutants (G125S and G177A) showed proper mitochondrial targeting but displayed significant inhibition in 3H-TPP uptake and a decrease in level of expression of the MTPPT protein. These findings advance our knowledge of the physiology and cell biology of the mitochondrial TPP uptake process. The results also show that clinical mutations in the hMTPPT system impair its functionality via affecting its level of expression with no effect on its targeting to mitochondria.  相似文献   

17.
The responses of plants to abiotic stress involve the up-regulation of numerous metabolic pathways, including several major routes that engage thiamine diphosphate (TDP)-dependent enzymes. This suggests that the metabolism of thiamine (vitamin B1) and its phosphate esters in plants may be modulated under various stress conditions. In the present study, Zea mays seedlings were used as a model system to analyse for any relation between the plant response to abiotic stress and the properties of thiamine biosynthesis and activation. Conditions of drought, high salt, and oxidative stress were induced by polyethylene glycol, sodium chloride, and hydrogen peroxide, respectively. The expected increases in the abscisic acid levels and in the activities of antioxidant enzymes including catalase, ascorbate peroxidase, and glutathione reductase were found under each stress condition. The total thiamine compound content in the maize seedling leaves increased under each stress condition applied, with the strongest effects on these levels observed under the oxidative stress treatment. This increase was also found to be associated with changes in the relative distribution of free thiamine, thiamine monophosphate (TMP), and TDP. Surprisingly, the activity of the thiamine synthesizing enzyme, TMP synthase, responded poorly to abiotic stress, in contrast to the significant enhancement found for the activities of the TDP synthesizing enzyme, thiamine pyrophosphokinase, and a number of the TDP/TMP phosphatases. Finally, a moderate increase in the activity of transketolase, one of the major TDP-dependent enzymes, was detectable under conditions of salt and oxidative stress. These findings suggest a role of thiamine metabolism in the plant response to environmental stress.  相似文献   

18.
Following receptor-mediated endocytosis of trimethyllysine-labeled asialofetuin and agalacto-orosomucoid by liver parenchymal and nonparenchymal cells, respectively, the glycoproteins are degraded and the methylated lysine residues released. The free intracellular trimethyllysine is then converted, in addition to 2-N-acetyl-6-N-trimethyllysine, to 4-N-trimethylaminobutyrate, carnitine, and acetylcarnitine. In the presence of 1-amino-D-proline, a vitamin B6 antagonist, the total production from protein-bound trimethyllysine of 4-N-trimethylaminobutyrate, the immediate precursor of carnitine, carnitine, and its acetylated derivative was depressed by as much as 60-80% in perfused rat liver. The decreased synthesis of carnitine was accompanied by an accumulation of 3-hydroxy-6-N-trimethyllysine, and intermediate in the carnitine biosynthetic pathway. The extent of 3-hydroxy-6-N-trimethyllysine accumulation, which was not evident in the absence of added 1-amino-D-proline, depended on the dose of 1-amino-D-proline perfused through the liver. In addition, those effects of 1-amino-D-proline were almost completely reversed by inclusion of pyridoxine in the perfusing medium. These results support the suggestion of a requirement for pyridoxal 5'-phosphate in the biosynthesis of carnitine by the liver.  相似文献   

19.
An improved and easy to use method for the determination of thiamin diphosphate (TDP) in 100 μl of whole blood was developed. The small sample volume makes it possible to assess the nutritional status of vitamin B1 in infants and even in preterm infants. Sample preparation comprises the extraction of TDP from whole blood by hemolysis, protein precipitation with trichloroacetic acid, and subsequent centrifugation. Potassium ferricyanide is used for pre-column derivatization of TDP to its fluorescent thiochrome derivative. Chromatographic separation was carried out using a reversed-phase column and an isocratic elution which consisted of a phosphate buffer and acetonitrile. TDP was detected fluorimetrically and quantified by external standardization. Method validation showed a high precision, almost complete recovery, and a high sensitivity. The lower limit of detection and the lower limit of quantification were 0.2 ng/ml and 4 ng/ml, respectively. Linearity was demonstrated over the expected concentration range of 4–400 ng/ml. In conclusion, we present a convenient HPLC method for the determination of TDP which is precise, sensitive and suitable for pediatric diagnostics.  相似文献   

20.
To clarify the process of free and small peptide-bound hydroxyproline synthesis in hepatic fibrogenesis, we measured the in vitro synthesis of [14C]hydroxyproline in the 67% ethanol soluble fraction in rat liver slices, together with hepatic protein-bound [14C]hydroxyproline synthesis. In control rat liver, the amount of free and small peptide-bound [14C]hydroxyproline synthesized was 13.1 +/- 2.6 10(-4) x dpm/g liver/3 hr. In the CCl4-treated rat liver, where the hepatic hydroxyproline content was increased 4.6-fold, the protein-bound [14C]hydroxyproline synthesis was significantly increased 1.5-fold, but free and small peptide-bound [14C]hydroxyproline synthesis was decreased into 70%. There was a significant inverse correlation between free and small peptide-bound [14C]hydroxyproline synthesis, and hepatic hydroxyproline content. These results suggest that the combination of an increase in collagen synthesis and a decrease in free and small peptide-bound [14C]hydroxyproline synthesis contributes to rapid accumulation of collagen in hepatic fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号