首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the three cichlid species flocks in eastern Africa, Lake Tanganyika harbors the oldest species assemblage, which is also the most diverse morphologically and behaviorally. For 12 species (20 individuals) of 12 genera of the tribe Ectodini, 852 bp from two segments (cytochrome b and control region) of the mitochondrial genome were sequenced. In addition, orthologous sequences were obtained from eight species (11 individuals) representing other mouthbrooding lineages from Lake Tanganyika. Comparisons of sequence divergences revealed that the single Tanganyikan tribe Ectodini appears to be approximately five times older than the whole Lake Malawi cichlid species flock, suggesting that the radiation of the Tanganyikan mouthbrooding lineages took place long before the species flocks of Lakes Malawi and Victoria evolved. Seven of nine surveyed tribes of Tanganyikan cichlids appear to be approximately equally divergent, and this seems to corroborate the hypothesis of a rapid simultaneous formation of lineages at an early stage in the history of the Lake Tanganyika species flock. The close genetic relationship between the endemic Tropheus lineage and a nonendemic "Haplochromine," Astatotilapia burtoni, indicates that members of the tribe Tropheini may be the sister group of the cichlid flocks of Lakes Malawi and Victoria. The phylogenetic analyses demonstrate the monophyly of the Ectodini and identify the Cyprichromini as their sister group among the Tanganyikan cichlids. Within the tribe Ectodini the molecular data suggest both a branching pattern different than that previously proposed and a subdivision of the Ectodini into four clades, instead of the two originally described. The previously postulated model of morphological transformations believed to be responsible for the drastically different types of ecological specialization found among the Ectodini might therefore be in need of reinterpretation. Characters immediately related to foraging and nutrition seem to be particularly prone to homoplasy, even among members of a single lineage of cichlid fishes.   相似文献   

2.
Xanthopygina is a group of colourful, neotropical rove beetles (Staphylinidae) comprising 28 genera and more than 350 species. While many genera are found on rotting fruits, carrion, dung and mushrooms, several taxa have evolved associations with social insects. Previous phylogenetic analyses have used only a subset of genera and were based solely on molecular data. In this paper, we performed Bayesian and maximum likelihood phylogenetic analyses of all known genera, including three potentially new genera, based on molecular (4,797 bp) and morphological (91) characters. Our results reaffirmed the monophyly of the subtribe and divided it into eight major lineages: the Elmas, Gastrisus, Isanopus, Ocyolinus, Plociopterus, Smilax, Trigonopselaphus and Xanthopygus groups. We hypothesized that myrmecophily evolved once in the common ancestor of the Smilax group, and that sphecophily possibly evolved twice, in the Trigonopselaphus and Xanthopygus groups.  相似文献   

3.
Lake Tanganyika, the oldest of the East African Great Lakes, harbors the ecologically, morphologically, and behaviorally most complex of all assemblages of cichlid fishes, consisting of about 200 described species. The evolutionary old age of the cichlid assemblage, its extreme degree of morphological differentiation, the lack of species with intermediate morphologies, and the rapidity of lineage formation have made evolutionary reconstruction difficult. The number and origin of seeding lineages, particularly the possible contribution of riverine haplochromine cichlids to endemic lacustrine lineages, remains unclear. Our phylogenetic analyses, based on mitochondrial DNA sequences of three gene segments of 49 species (25% of all described species, up to 2,400 bp each), yield robust phylogenies that provide new insights into the Lake Tanganyika adaptive radiation as well as into the origin of the Central- and East-African haplochromine faunas. Our data suggest that eight ancient African lineages may have seeded the Tanganyikan cichlid radiation. One of these seeding lineages, probably comprising substrate spawning Lamprologus-like species, diversified into six lineages that evolved mouthbrooding during the initial stage of the radiation. All analyzed haplochromines from surrounding rivers and lakes seem to have evolved within the radiating Tanganyikan lineages. Thus, our findings contradict the current hypothesis that ancestral riverine haplochromines colonized Lake Tanganyika to give rise to at least part of its spectacular endemic cichlid species assemblage. Instead, the early phases of the Tanganyikan radiation affected Central and East African rivers and lakes. The haplochromines may have evolved in the Tanganyikan basin before the lake became a hydrologically and ecologically closed system and then secondarily colonized surrounding rivers. Apparently, therefore, the current diversity of Central and East African haplochromines represents a relatively young and polyphyletic fauna that evolved from or in parallel to lineages now endemic to Lake Tanganyika.  相似文献   

4.
Genus level phylogenetic patterns within a monophyletic group of wetland mosses consisting ofTomentypnum, Hamatocaulis, Scorpidium, Conardia, Calliergon, Warnstorfia, Straminergon, andLoeskypnum (Amblystegiaceae) are cladistically analysed, usingPalustriella and partlyCratoneuron as outgroups. The ingroup consists of two clades, one withTomentypnum, Hamatocaulis andScorpidium, the other with the other ingroup genera. The second clade gets completely resolved only with the inclusion of habitat data. The adaptation to relatively dry wetland habitats probably evolved in the ancestor ofStraminergon andLoeskypnum, the species ofCalliergon andWarnstorfia, which are more ancestral, growing in wetter habitats. The more primitive taxa of the ingroup, as well asPalustriella species, occur in relatively mineral-rich habitats and adaptations to poorer habitats occurred several times in the two clades.  相似文献   

5.
Lake Tanganyika harbors the oldest, morphologically and behaviorally most diverse flock of cichlid species. While the cichlids in Lakes Malawi and Victoria breed their eggs exclusively by buccal incubation (termed "mouthbrooding"), the Tanganyikan cichlid fauna comprise mouthbrooding and substrate-spawning lineages (fish spawn on rocks, and never orally incubate eggs or wrigglers). The substrate-spawning tribe Lamprologini appears to occupy a key position that might allow one to elucidate the origin of the Tanganyika flock, because five riverine (therefore nonendemic) species from the Zaire River system have been assigned to this tribe, in addition to the lake's endemic species, which make up almost 50% of all 171 species known from this lake (Poll 1986). From 16 species (18 individuals) of the tribe Lamprologini, a 402-bp segment of the mitochondrial cytochrome b gene was sequenced, and, from 25 lamprologine species (35 individuals), sequences from the mitochondrial control region were obtained. To place the Lamprologini into a larger phylogenetic framework, orthologous sequences were obtained from eight nonlamprologine Tanganyikan cichlid species (13 individuals). The Lamprologini are monophyletic, and a clade of six Tanganyikan lineages of mouthbrooders, representing five tribes (Poll 1986), appears to be their sister group. Comparisons of sequence divergences of the control region indicate that the Lamprologini may be older than the endemic Tanganyikan tribe Ectodini, and short basal branches might suggest a rapid formation of lineages at an early stage of the Tanganyika radiation. It is interesting that three analyzed riverine members of the tribe form a monophyletic group; however, they are not the most ancestral branch of the Lamprologini. This might indicate that they are derived from an endemic lamprologine ancestor that left Lake Tanganyika by entering the Zaire River system. These riverine species may not have seeded the Tanganyikan radiation, as currently thought, but may have recently recolonized the river after a long period of isolation, as soon as the lake was connected to the Zaire River again about 2 Mya. Neolamprologus moorii, endemic to Lake Tanganyika, appears to represent the most basal clade of the Lamprologini. Complex breeding behavior, involving the usage of gastropod shells and associated with dwarfism, is likely to have evolved in parallel in several lineages among the Lamprologini. The tribe Lamprologini may be in need of revision, since several genera appear to be polyphyletic.   相似文献   

6.
7.
The generic concept of coccoid green algae exhibiting a crescent‐shaped morphotype is evaluated using SSU rRNA gene sequence analyses and light and electron microscopical observations. These common chlorophytes evolved polyphyletically in 10 different clades of the Chlorophyceae and three clades of the Trebouxiophyceae. Six clades are assigned to known genera of Selenastraceae: Kirchneriella, Nephrochlamys, Raphidocelis, Rhombocystis, Selenastrum, and Tetranephris. Four other clades, named following their present genus designation as Ankistrodesmus‐like I and II and Monoraphidium‐like I and II, require further investigation. One crescent‐shaped morphotype, which evolved within the Trebouxiophyceae, is designated as Neocystis mucosa sp. nov. The other two lineages containing trebouxiophycean algae with this morphotype are the Elliptochloris and the Watanabea clades. The taxonomic placement of the widely used bioassay strain “Selenastrum capricornutum” NIVA‐CHL 1 in the genus Raphidocelis (species name Raphidocelis subcapitata) is indicated by molecular data.  相似文献   

8.
9.
Abstract A phylogenetic analysis of Berosini including 15 taxa, 11 of them belonging to Berosini (ingroup), was performed. Of the 58 characters used, 32 derive from the larval stages, and 26 from the adult stage. Two well‐supported clades are recognized, one comprising Hemiosus and Berosus, and the other comprising Derallus, Regimbartia and Allocotocerus. Several larval evolutionary trends are discussed: shifts to benthic and cryptic habits, morphological modifications and adaptations related to these habits, and morphological changes of the clypeolabrum and head appendages. A comparative table for the larval stages of the five genera is included.  相似文献   

10.
Origin of hummingbird faunas   总被引:6,自引:0,他引:6  
Ecological studies of hummingbird communities have emphasized the importance of local conditions and contemporary interactions in the development of these varied faunas. A time-calibrated, DNA hybridization-based phylogeny of the principal hummingbird lineages was used to examine historical aspects of hummingbird faunas in the species-rich tropical lowlands and Andes, and the relatively depauperate West Indies and temperate regions of Central and North America. Parsimony reconstructions of ancestral distributions indicate that these faunas are polyphyletic in origin, comprising several to many independent lineages. Based on the timing of geologic and cladogenic events, hummingbird faunas appear to have arisen more often by colonization than by large-scale vicariance, with multiple dispersals across water gaps, elevational gradients, and latitude. The extent to which particular lineages colonized different regions depended, however, on lineage ecology as well as on the habitat and age of the fauna. In general, the oldest extant trochilofauna, which today occupies the tropical lowlands, was the principal source of colonizing taxa. However, all regions except possibly the West Indies contributed taxa now found elsewhere, including in the tropical lowlands. The Andean fauna comprises several lineages with lowland origin (hermits, Mangoes, Brilliants, Coquettes, Emeralds) as well as at least one that arose in temperate regions outside South America (Bees). At least two lineages that colonized the West Indies gave rise to endemic genera (Mangoes to Eulampis, and Emeralds to Orthorhyncus). Even groups that diversified in the highlands (Brilliants and Bees) gave rise to taxa that subsequently reinvaded the tropical lowlands. As the result of these varied histories, hummingbird communities cannot be arranged easily with respect to organizational complexity and coevolution with nectar sources. Although the physically insular faunas in the Andes and West Indies differ markedly in diversity, both were more strongly affected by colonization than the other faunas. A high potential for coevolution between hummingbirds and plants probably facilitated the successful establishment and radiation of the several Andean-associated lineages. However, coexistence between the two most diverse Andean clades may have been favoured initially through different habitat preferences by their extra-Andean ancestors. In the tropical lowlands, by comparison, the basic separation between the forest-dwelling hermits and canopy and edge-dwelling nonhermits appears to have evolved in situ. The low species and morphologic diversity of hummingbirds breeding north of Mexico reflects the predominance there of a single relatively recent lineage. The regional coexistence of numerous unrelated lineages implies that patterns of ancestry, colonization, and extinction contribute to the make-up of contemporary species-rich hummingbird faunas and serves to qualify the view that hummingbird communities are coadapted assemblages that resist change.  相似文献   

11.
The horned soldier aphids of the Cerataphidini, unlike most social insects that reside in nests, live on the open surface of plants. The lack of a nest and other obvious ecological correlates makes it unclear why secondary-host soldiers might have evolved. Here I present a molecular phylogenetic analysis of 32 species of the Cerataphidini, including 10 species from the genera Ceratovacuna and Pseudoregma that produce horned soldiers. The phylogeny suggests that horned soldiers evolved once and were lost once or twice. Most horned soldiers are a morphologically specialized caste and two species that have unspecialized soldiers are independently derived from species with specialized castes. The genus Ceratovacuna appears to have undergone a relatively rapid radiation. Mapping secondary-host plants and geographic ranges onto the phylogeny suggests that bamboos were the ancestral secondary-host plants and that the Asian tropics and subtropics were the ancestral geographic regions for the genera Astegopteryx, Ceratoglyphina, Ceratovacuna Chaitoregma, and Pseudoregma and possibly for the entire tribe. There is evidence for vicariant events that separate the tropical and subtropical lineages in all of the major lineages of the tribe and for dispersal of some lineages. Based on these results, I present hypotheses for the causes and consequences of horned-soldier evolution.  相似文献   

12.
The crinoid families Isocrinidae and Pentacrinitidae are well represented in the British Lower Jurassic, allowing a detailed investigation of their evolution at this time. The pseudopelagic pentacrinitids diverged from the benthic isocrinids during the Triassic. Seirocrinus arose from Pentacrinites through hyper‐morphosis prior to the start of the Jurassic but both genera subsequently show extreme evolutionary conservatism, perhaps attributable to constraints imposed by their unusual life‐style. From a single species in the Hettangian, the benthic isocrinids diversified in the Sinemurian and Carixian. A “central lineage”;, comprising three species of Chladocrinus, evolved along a peramorphocline by “intermittent anagenesis”;, prolonged periods of evolutionary stasis punctuated by short periods of gradualistic change. Two main offshoots, Balanocrinus and Hispidocrinus gen. nov., represent shifts into new habitats. Balanocrinus arose through progenesis, with subsequent evolution along a paedomorphocline, while Hispidocrinus may have arisen through extreme peramorphosis, although its spinose brachials are an evolutionary innovation. Both genera show an apparently punctuated mode of evolution. There is some correlation between morphology and faciès, and also between the emergence of new species and times of high sea level. Benthic isocrinids appear to have been greatly affected by the early Toarcian anoxic event but the pseudopelagic pentacrinitids were not.  相似文献   

13.
Nucleotide sequence variation of the chloroplast rbcL gene of 78 representatives of Jungermanniales suborders Jungermanniineae and Cephaloziineae and five outgroup species is analysed using maximum parsimony and maximum likelihood. Jungermannia s.l. is resolved in three independent lineages corresponding to Jungermannia subgen. Jungermannia, Liochlaena and Solenostoma (incl. subgen. Plectocolea). Based on the outcome of the phylogenetic analyses we adopt a narrow generic concept of Jungermannia and accept the genera Liochlaena and Solenostoma. Contrary to proposed hypotheses, the monospecific genus Eremonotus is not nested in Scapaniaceae, Gymnomitriaceae, Cephaloziellaceae or Cephaloziaceae but placed in a clade together with Jungermannia s.str., Liochlaena, Delavayella and Leiocolea. These genera possess female involucres consisting solely of leaf tissue (perianths). Related clades comprise genera with female involucres originating at least partly from stem tissue. We propose to include Delavayella, Eremonotus, Jungermannia s.str., Leiocolea and Liochlaena in Jungermanniaceae based on the phylogenetic reconstructions of cpDNA variation and the distribution of perianths in Jungermanniales suborder Jungermanniineae.  相似文献   

14.
A recent phylogenetic study of langurs and leaf monkeys of South Asia suggested a reticulate evolution of capped and golden leaf monkeys through ancient hybridization between Semnopithecus and Trachypithecus. To test this hybridization scenario, I analysed nuclear copies of the mitochondrial cytochrome b gene (numts) from capped, golden and Phayre’s leaf monkeys. These numts were aligned with mitochondrial cytochrome b sequences of various species belonging to the genera Semnopithecus and Trachypithecus. In the phylogenetic tree derived from this alignment, the numts fell into three distinct clades (A, B and C) suggesting three independent integration events. Clade A was basal to Semnopithecus, and clades B and C were basal to Trachypithecus. Among the numts in clades A and C were sequences derived from species not represented in their respective sister mitochondrial groups. This unusual placement of certain numts is taken as additional support for the hybridization scenario. Based on the molecular dating of these integration events, hybridization is estimated to have occurred around 7.1 to 3.4 million years ago. Capped and golden leaf monkeys might have to be assigned to a new genus to reconcile their unique evolutionary history. Additionally, northeast India appears to be a ‘hot spot’ for lineages that might have evolved through reticulate evolution.  相似文献   

15.
The unparalleled avian diversity of the Neotropics has long been argued to be in large part the evolutionary consequence of the incredible habitat diversity and rugged topography of the Andes mountains. Various scenarios have been proposed to explain how the Andean context could have generated lineage diversification (e.g. vicariant speciation or parapatric speciation across vertical ecological gradients), yet further study on Andean taxa is needed to reveal the relative importance of the different processes. Here we use mitochondrial and nuclear DNA sequences to derive the first phylogenetic hypothesis for Phrygilus (Sierra-Finches), one of the most species-rich genera of mainly Andean passerines. We find strong evidence that the genus is polyphyletic, comprising four distantly related clades with at least nine other genera interspersed between them (Acanthidops, Catamenia, Diglossa, Haplospiza, Idiopsar, Melanodera, Rowettia, Sicalis and Xenodacnis). These four Phrygilus clades coincide with groups previously established mainly on the basis of plumage characters, suggesting single evolutionary origins for each of these. We consider the history of diversification of each clade, analyzing the timing of splitting events, ancestral reconstruction of altitudinal ranges and current geographical distributions. Phrygilus species origins date mainly to the Pleistocene, with representatives diversifying within, out of, and into the Andes. Finally, we explored whether Phrygilus species, especially those with broad altitudinal and latitudinal Andean distributions, showed phylogeographic structure. Our best-sampled taxon (Phrygilus fruticeti) exhibited no clear pattern; however, we found deep genetic splits within other surveyed species, with Phrygilus unicolor being the most extreme case and deserving of further research.  相似文献   

16.
Homologous segments identified by G-banding sequences of chromosomes of Peromyscus boylii, Neotoma micropus, Oryzomys capito, (Family Cricetidae) Rattus norvegicus, Melomys burtoni, and Apodemus sylvaticus (Family Muridae) were used to hypothesize a chromosomal condition for the cricetid ancestor. A critical assumption in proposing the primitive G-banding sequences for a given chromosome is that if the outgroup and ingroup taxa have a specific sequence, then the ancestor of the ingroup taxa also had that same sequence. Using this methodology, (chromosome numbers refer to proposed homology to the standardized karyotype for Peromyscus), we propose that: (1) the primitive banding pattern of chromosome 1 was identical to that of Neotoma; (2) the primitive patterns of chromosomes 2, 3, 4, 6, 7, 8, 9, 10, 11, and 12 were primitive banding patterns of 5 and 13 were undetermined; (4) a major portion of the banding patterns of 14 and X were present in the ancestral karyotype. Only the largest 14 autosomes and X were examined because the smaller elements had insufficient G-band definition to ensure reasonable accuracy. The karyotype ancestral to that of Peromyscus, Neotoma, and Oryzomys may be as above and the banding patterns of 5, 13, and 14 were acrocentric and identical to those shown for Peromyscus, Neotoma, and Oryzomys (Fig. 1). In the primitive karyotype, heterochromatin (C-band material) was probably limited to the centromeric regions. If the primitive karyotype is as described above, then it is possible to determine the direction, type, and magnitude of chromosomal evolution evident in the various cricetid lineages. Based on the available data, radiation from the ancestral cytotype is characterized by a nonrandom distribution of types of chromosomal changes. Within many genera, more rearrangements occur in the 14 largest autosomal chromosomes of some congeneric species than distinguish the proposed primitive conditions for the genera Peromyscus, Neotoma, and Oryzomys. It would appear that the extensive morphological radiation from the primitive cricetid ancestor as indicated by the presence of over 100 surviving genera within the family, was not accompanied by extensive karyotypic changes. The magnitude of chromosomal variation that accompanies speciation in these genera appears to range from no detectable chromosomal evolution to a radical reorganization of the genome.  相似文献   

17.
Synopsis The zooplanktivorous cichlid Microdontochromis sp. formed large stationary schools in midwater consisting of mouthbrooding and nonbrooding individuals. Early young smaller than 6.0 mm in standard length were mouthbrooded solely by females, but large young, up to 17.4 mm, were mouthbrooded by both females and males. Mouthbrooding fish took food as actively as nonbrooding fish to nourish the young and themselves. Eggs were 1.9 mm in maximum diameter, among the smallest known for mouthbrooding cichlid fishes. Young which ate food within the parent's buccal cavity showed a 10-fold increase in dry weight during the mouthbrooding period. Data suggested that parents finally farmed out their young into broods of other cichlid fishes.  相似文献   

18.
We performed a phylogenetic analysis focused on the hydrophiloid family Helophoridae (Coleoptera: Polyphaga) in order to test the phylogenetic position of selected Mesozoic fossils assigned to the Hydrophiloidea. The analysis is based on 92 characters of larvae and adults, and includes all extant subgenera of Helophorus and representatives of all other extant hydrophiloid families. Based on this analysis, we provide additional evidence for the monophyly of the helophorid lineage containing the families Helophoridae, Georissidae and Epimetopidae, as well as the first hypothesis on the phylogenetic relationships within Helophorus, revealing three main clades: Lihelophorus, Rhopalohelophorus and the clade of sculptured small subgenera; the subgenera Helophorus s.str., Gephelophorus, Trichohelophorus and Transithelophorus are recognized as paraphyletic or polyphyletic. Inclusion of fossil species in the analysis reveals the Mesozoic genera Hydrophilopsia Ponomarenko, Laetopsia Fiká?ek et al. (adult forms) and Cretotaenia Ponomarenko (larval form) as basal extinct clades of the helophorid lineage, the former genus Mesosperchus Ponomarenko as containing probable stem taxa of Helophorus and the former genus Mesohelophorus Ponomarenko as a member of the Helophorus clade containing extant sculptured subgenera. The extant subgenus Thaumhelophorus syn.nov. is synonymized with Rhopalohelophorus. Our results show that the family Helophoridae may be dated back to the late Jurassic (c. 150 Ma) and the extant clades of Helophorus back to the Early Cretaceous (c. 136 Ma). The basal groups of Helophorus and the supposed basal extinct lineages of the helophorid lineages are shown to be aquatic as adults. A single origin of trichobothria and ventral hydrophobic pubescence in the common ancestor of the Hydrophiloidea is hypothesized, indicating ancestral aquatic habits in the adult stage for the whole Hydrophiloidea.  相似文献   

19.
Expansins comprise a superfamily of plant cell wall-loosening proteins that has been divided into four distinct families, EXPA, EXPB, EXLA and EXLB. In a recent analysis of Arabidopsis thaliana and Oryza sativa expansins, we proposed a further subdivision of the families into 17 clades, representing independent lineages in the last common ancestor of monocots and eudicots. This division was based on both traditional sequence-based phylogenetic trees and on position-based trees, in which genomic locations and dated segmental duplications were used to reconstruct gene phylogeny. In this article we review recent work concerning the patterns of expansin evolution in angiosperms and include additional insights gained from the genome of a second eudicot species, Populus trichocarpa, which includes at least 36 expansin genes. All of the previously proposed monocot-eudicot orthologous groups, but no additional ones, are represented in this species. The results also confirm that all of these clades are truly independent lineages. Furthermore, we have used position-based phylogeny to clarify the history of clades EXPA-II and EXPA-IV. Most of the growth of the expansin superfamily in the poplar lineage is likely due to a recent polyploidy event. Finally, some monocot-eudicot clades are shown to have diverged before the separation of the angiosperm and gymnosperm lineages. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

20.
Sequences of the ITS region of nrDNA were analyzed for the seven genera of Papaveraceae subf. Chelidonioideae s.str. Three major clades can be recognized. These are 1.Chelidonium/Hylomecon/Stylophorum, 2.Eomecon/Sanguinaria, and 3.Bocconia/Macleaya. The monophyly of genera in the first of these three clades is doubtful, and clades two and three are sister to each other. Use of the ITS phylogeny of the subfamily to trace its morphological and ecological evolution shows that morphological change is concentrated in theBocconia/Macleaya clade, and probably related to the evolution of wind-pollination from insect-pollination in these two genera after habitat shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号