首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rep-38 and mmrA1 mutations are located very close to each other (approximately 85 min), and have been suggested to be allelic. To address this question we have compared the phenotypes of the mmrA1 and rep-38 mutants. Both the mmrA1 and rep-38 mutations blocked the enhanced killing and inhibition of postreplication repair by rich growth medium that occurs in UV-irradiated Escherichia coli K-12 uvrA cells, i.e., the mmrA1 and rep-38 strains did not show minimal medium recovery (MMR). However, phi X174 bacteriophage propagated well in mmrA1 strains, but not in rep-38 strains; a rep mutation sensitized a uvrA strain to UV irradiation, but a mmrA mutation did not. During chloramphenicol treatment, the rep-38 strain showed a larger amount of residual DNA synthesis than observed in the mmrA1 strain. The mmrA1 mutation appears to be a dominant mutation. This was determined by the failure of either plasmid pLC44-7 or episome F'KLF11, both of which carry the mmrA+ gene, to complement the Mmr- phenotype of a uvrA mmrA strain. Plasmid pLC44-7 is known to complement the rep-38 mutation, suggesting that rep-38 is a recessive mutation. Although certain of the phenotypes of the rep and mmrA mutants are similar, a number are quite different. These differences suggest that these two mutations are not allelic.  相似文献   

2.
Mutagenesis at a specific position in a DNA sequence   总被引:25,自引:0,他引:25  
Predefined changes in a known DNA sequence were introduced by a general method. Oligodeoxyribonucleotides complementary to positions 582 to 593 of the viral DNA strand of the bacteriophage phiX174 am3 mutant (pGTATCCTACAAA), and to the wild type sequence in this region (pGTATCCTACAAA), were synthesized and used as specific mutagens. Each of these oligonucleotides was incorporated into a complete circular complementary strand when used as primer on a genetically heterologous viral strand template, by the combined action of subtilisin-treated Escherichia coli DNA polymerase I and T4 DNA ligase. Incomplete duplexes were removed or were inactivated by nuclease S1 and the products were used to transfect spheroplasts of E. coli. Both oligonucleotides induced specific mutations at high efficiency when used with heterologous template (15% mutants among progeny phage). The am phages isolated by this procedure are phenotypically gene E mutants, and contain A at position 587 of the viral strand. They thus appear identical with am3 and provide evidence that the change G leads to A at position 587 is sufficient to produce a defective E function. Since the template for the induction of am mutants carried another genetic marker (sB1), the strains carrying the induced mutations have the new genotype am3 sB1. It should be possible to introduce the am3 mutation into any known mutant strain of phi174 using this same oligonucleotide. Both possible transition mutations were induced in these experiments. In principle, the method could also induce transversions, insertions, and deletions. The method should be applicable to other circular DNAs of similar size, for example recombinant DNA plasmids.  相似文献   

3.
A functional dnaZ product, known to be essential for host DNA polymerization and for the synthesis of M13 and phiX174 parental replicative-form (RF) DNA, is required also for RF replication and single-strand synthesis by both of these phages. All three stages of M13 and phiX174DNA replication (parental RF formation, RF replication, and single-strand synthesis) are inhibited in dnazts mutants at elevated temperatures. In addition, the thermolabile step in M13 parental RF formation appears to occur after RNA priming;i.e., the synthesis of M13 RF DNA proceeded when a dnaZts mutant, infected at a nonpermissive temperature, was transferred to a permissive temperature in the presence of rifampin.  相似文献   

4.
Bacteriophages are present in every environment that supports bacterial growth, including manmade ecological niches. Virulent phages may even slow or, in more severe cases, interrupt bioprocesses driven by bacteria. Escherichia coli is one of the most widely used bacteria for large-scale bioprocesses; however, literature describing phage-host interactions in this industrial context is sparse. Here, we describe phage MED1 isolated from a failed industrial process. Phage MED1 (Microviridae family, with a single-stranded DNA [ssDNA] genome) is highly similar to the archetypal phage phiX174, sharing >95% identity between their genomic sequences. Whole-genome phylogenetic analysis of 52 microvirus genomes from public databases revealed three genotypes (alpha3, G4, and phiX174). Phage MED1 belongs to the phiX174 group. We analyzed the distribution of single nucleotide variants in MED1 and 18 other phiX174-like genomes and found that there are more missense mutations in genes G, B, and E than in the other genes of these genomes. Gene G encodes the spike protein, involved in host attachment. The evolution of this protein likely results from the selective pressure on phages to rapidly adapt to the molecular diversity found at the surface of their hosts.  相似文献   

5.
Reactivation of single-stranded DNA phage, photodynamically inactivated in the presence of proflavine sulfate, by three isogenic Escherichia coli strains having different DNA repair capabilities has been studied. It was found that reactivation of photoinactivated phiX174 was possible only if the host cells were recombination proficient (recA(+)) and had been lightly irradiated with UV light prior to infection; the presence of the uvrA(+) gene was not essential. Only a small part of the proflavine-mediated photodynamic damage in phiX174 could be repaired in this fashion. Burst sizes of reactivated phages were, however, comparable to those of normal unirradiated phages.  相似文献   

6.
The large pyrimidine oligonucleotides from the DNAs of the two related bacteriophages phiX174 and S13 have been sequenced. The largest pyrimidine oligonucleotide present is unique to S13 DNA and is the undecanucleotide C5T6, sequence C-T-T-C-C-T-C-T-T-C-T. Considerable sequence homology has been found between the pyrimidine oligonucleotides of the two phage DNAs. Out of 14 oligonucleotide sequences from S13 DNA (120 bases) at least ten are identical with sequences of oligonucleotides from phiX174 DNA (92 bases) and two are closely related (17 bases), the only difference being a single thymine to cytosine transition in each sequence (a total of 107 identical bases). The pyrimidine oligonucleotides of each phage DNA show extensive internal sequence homology among each other with up to eight bases identical in sequence in pairs of different oligonucleotides. Another interesting observation is the occurrence of symmetrical sequences (true palindromes) which read the same forwards as backwards. The longest symmetrical sequence is the nonanucleotide C4T5 sequence, C-T-C-T-T-T-C-T-C, present in both S13 and phiX174 DNAs. The extensive sequence homology observed between the pyrimidine oligonucleotides of S13 and phiX174 supports the close relationship of the two phages and provides further evidence that they were derived from recent common ancestors.  相似文献   

7.
The dnaH mutant strain HF4704S, isolated by Sakai et al. (1974), was examined for its effect on phiX174 deoxyribonucleic acid (DNA) synthesis. It was found to carry two mutations affecting DNA synthesis. One mutation had no affect on phiX174 DNA synthesis, but did affect the ability of the mutant cells to form colonies on agar medium at 41 degrees C, and caused host DNA synthesis to cease after 1 h at 41 degrees C. The mutant marker cotransduced with ilvD at a frequency of about 9%. It seems likely that this mutation is in the dnaA gene. The second mutation affected the ability of the mutant cells to form colonies on agar medium supplemented with only 2 mug of thymine per ml, and affected both host and phiX174 DNA synthesis in medium supplemented with only 2 mug of thymine per ml. Both effects could be overcone by adding excess exogenous thymine. We were not able to unambiguously determine the map position of this mutant locus. Our data show that the DNA synthesis phenotype of the mutant strain HE4704S is governed by both these mutations, neither of which directly affects the replication of phiX174 DNA.  相似文献   

8.
(32)P-labeled single-stranded DNA phage phiX174 was photodynamically inactivated by irradiation in air with visible light in the presence of the acridine dye, proflavine sulfate. The inactivated phages could adsorb to the host cells but failed to lyse them. Formation of intracellular mature phages was almost completely inhibited. Photodynamic lesions in phiX174 DNA caused intracellular formation of defective double-stranded replicative form molecules which ultimately reverted to the single-stranded configuration.  相似文献   

9.
We have directly tested the effects of host cell DNA synthesis mutations on bacteriophage phiK replicative-form (RF) DNA replication in vivo. We observed that phiK RF DNA replication continued at normal rates in both dnaB and dnaC mutant hosts under conditions in which the activities of the dnaB and dnaC gene products were shown to be markedly reduced. This suggests that these two host proteins are not essential for normal phiK RF DNA replication. In control experiments we observed markedly reduced rates of phiK RF DNA replication in temperature-sensitive dnaG and dnaE host mutants, indicating that the products of these genes are essential. Thus, the mechanism of DNA chain initiation in vivo on the duplex RF DNA templates of isometric phages such as phiK apparently is different from that on the similar templates of isometric phages such as phiX174. The implications of this difference are discussed in the text.  相似文献   

10.
By selecting survivors of λ phage infection, mutants of Escherichia coli K12 that block reproduction cycle of the phage have been isolated. Fourteen of these phage-tolerant mutants (lam mutants) were chosen and characterized biochemically and genetically. It was shown that these mutants were tolerant to infection by all the lambdoid phages, except for few cases, but they were susceptible to infection by a non-lambdoid temperate phage (φ299), P1 or T phages. The mutants can be divided into at least three groups: (1) A mutant (lam 16) strain that seems to block normal penetration of phage DNA: (2) Three mutant (lam 64, lam 67 and lam 71) strains that block an “early” step(s) of phage growth, including phage DNA synthesis: (3) Six mutant (lam 24, lam 25, lam 26, lam 27, lam 646 and lam 6) strains that block normal functioning of the gene E products and produce unusual head structures. Some lambdoid phages and λ mutants that overcome the interference by the lam mutations have been obtained, and were used as tools for characterizing the host mutations. Two (lam 12 and lam 13) mutant strains and one (lam 1) mutant were inferred as affecting the expression of “late” genes, and early gene, respectively, by this test.  相似文献   

11.
Bacteriophage phiX174 DNA replication was examined in temperature-sensitive dnaB mutants of Escherichia coli C to determine which stages require the participation of the product of this host gene. The conversion of the infecting phage single-stranded DNA to the double-stranded replicative form (parental RF synthesis) is completely inhibited at the nonpermissive temperature (41 C) in two of the three dnaB mutants tested. The efficiency of phage eclipse and of phage DNA penetration of these mutant host cells at 41 C is the same as that of the parent host strain. The defect is most likely in the synthesis of the complementary strand DNA. The semiconservative replication of the double-stranded replicative form DNA (RF replication) is inhibited in all three host mutants after shifting from 30 to 41 C. Late in infection, the rate of progeny single-stranded phage DNA synthesis increases following shifts from 30 to 41 C. Approximately the same amounts of phage DNA and of infectious phage particles are made following the shift to 41 C as in the control left at 30 C. The simplest interpretation of our data is that the product of the host dnaB gene is required for phiX174 parental RF synthesis and RF replication, but is not directly involved in phage single-stranded DNA synthesis once it has begun. The possible significance of the synthesis of parental RF DNA at 41 C in one of the three mutants is discussed.  相似文献   

12.
Bacteriophage alpha3 is a member of the Microviridae, a family of small, single-stranded, icosahedral phages that include phiX174. These viruses have an ssDNA genome associated with approximately 12 copies of an H pilot protein and 60 copies of a small J DNA-binding protein. The surrounding capsid consists of 60 F coat proteins decorated with 12 pentameric spikes of G protein. Assembly proceeds via a 108S empty procapsid that requires the external D and internal B scaffolding proteins for its formation.The alpha3 "open" procapsid structural intermediate was determined to 15A resolution by cryo-electron microscopy (cryo-EM). Unlike the phiX174 "closed" procapsid and the infectious virion, the alpha3 open procapsid has 30A wide pores at the 3-fold vertices and 20A wide gaps between F pentamers as a result of the disordering of two helices in the F capsid protein. The large pores are probably used for DNA entry and internal scaffolding protein exit during DNA packaging. Portions of the B scaffolding protein are located at the 5-fold axes under the spike and in the hydrophobic pocket on the inner surface of the capsid. Protein B appears to have autoproteolytic activity that cleaves at an Arg-Phe motif and probably facilitates the removal of the protein through the 30A wide pores.The structure of the alpha3 mature virion was solved to 3.5A resolution by X-ray crystallography and was used to interpret the open procapsid cryo-EM structure. The main differences between the alpha3 and phiX174 virion structures are in the spike and the DNA-binding proteins. The alpha3 pentameric spikes have a rotation of 3.5 degrees compared to those of phiX174. The alpha3 DNA-binding protein, which is shorter by 13 amino acid residues at its amino end when compared to the phiX174 J protein, retains its carboxy-terminal-binding site on the internal surface of the capsid protein. The icosahedrally ordered structural component of the ssDNA appears to be substantially increased in alpha3 compared to phiX174, allowing the building of about 10% of the ribose-phosphate backbone.  相似文献   

13.
Nature of φX174 Linear DNA from a DNA Ligase-Defective Host   总被引:1,自引:0,他引:1       下载免费PDF全文
Linear DNAs have been prepared from phiX phage and from phiX RF II (double-stranded circular form of phiX DNA, formed during infection and nicked in one or both strands) molecules derived from infection at the restrictive temperature of Escherichia coli ts7, a host mutant with a temperature-sensitive DNA ligase activity. The linear DNA from these phages can be circularized by annealing with fragments of phiX RF DNA produced by the Haemophilus influenzae restriction nuclease. The circularization experiment indicated that the site of breakage of the linear phage DNAs is not unique nor confined to a particular region of the genome. These linear DNAs were less than 0.1% as infective as circular phage DNA. The linear, positive strand of late RF II DNA, however, is uniquely nicked in the region of the phiX genome corresponding to cistron A. Although a low level of infectivity is associated with the linear DNA derived from late RF II, this infectivity appears to be a result of the association of linear positive and linear negative strands during the infectivity assay.  相似文献   

14.
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.  相似文献   

15.
Uchiyama A  Fane BA 《Journal of virology》2005,79(11):6751-6756
The phiX174 external scaffolding protein D mediates the assembly of coat protein pentamers into procapsids. There are four external scaffolding subunits per coat protein. Organized as pairs of asymmetric dimers, the arrangement is unrelated to quasi-equivalence. The external scaffolding protein contains seven alpha-helices. The protein's core, alpha-helices 2 to 6, mediates the vast majority of intra- and interdimer contacts and is strongly conserved in all Microviridae (canonical members are phiX174, G4, and alpha3) external scaffolding proteins. On the other hand, the primary sequences of the first alpha-helices have diverged. The results of previous studies with alpha3/phiX174 chimeric external scaffolding proteins suggest that alpha-helix 1 may act as a substrate specificity domain, mediating the initial coat scaffolding protein recognition in a species-specific manner. However, the low sequence conservation between the two phages impeded genetic analyses. In an effort to elucidate a more mechanistic model, chimeric external scaffolding proteins were constructed between the more closely related phages G4 and phiX174. The results of biochemical analyses indicate that the chimeric external scaffolding protein inhibits two morphogenetic steps: the initiation of procapsid formation and DNA packaging. phiX174 mutants that can efficiently utilize the chimeric protein were isolated and characterized. The substitutions appear to suppress both morphogenetic defects and are located in threefold-related coat protein sequences that most likely form the pores in the viral procapsid. These results identify coat-external scaffolding domains needed to initiate procapsid formation and provide more evidence, albeit indirect, that the pores are the site of DNA entry during the packaging reaction.  相似文献   

16.
Stalkless mutants of Caulobacter crescentus.   总被引:9,自引:6,他引:3       下载免费PDF全文
A Fukuda  H Iba    Y Okada 《Journal of bacteriology》1977,131(1):280-287
A stalk, a single falgellum, several pili, and deoxyribonucleic acid (DNA) phage receptors are polar surface structures expressed at a defined time in the Caulobacter crescentus cell cycle. When mutants were isolated as DNA phage phiCbK-resistant or ribonucleic acid (RNA) phage phiCp2-resistant, as well as nonmotile, strains, 5 out of 30 such mutant isolates were found not to possess stalks, but did possess inactive flagella. These stalkless mutants were resistant simultaneously to both DNA and RNA phages and did not possess pili and DNA pendent stalkless mutants. All motile revertants simultaneously regained the capacity to form stalks and susceptibility to DNA and RNA phages. It is suggested that a single mutation pleiotropically affects stalk formation, flagella motility, and coordinate polar morphogenesis of pili and DNA phage receptors. The stalkless mutants grew at a generation time similar to that of the wild-type strain at 30 degrees C. Cell size and morphology of a stalkless mutant, C. crescentus CB13 pdr-819, were also similar to those of the wild-type strain, except for the absence of a stalk. In addition, the CB13 pdr-819 predivisional cells were partitioned into smaller and larger portions, indicating asymmetrical cell division, as in the wild-type strain. From these results, it is suggested that swarmer cells undergo transition to cells of a stalked-cell nature without stalk formation and that the cell cycle of the stalkless mutant proceeds in an ordered sequence similar to that defining the wild-type cell cycle.  相似文献   

17.
A highly efficient and much more reproducible system for the heterologous transfection of several kinds of Gram-negative bacterial spheroplasts with bacteriophage phiX174 DNA was established. By mild washing of the speroplasts, the efficiency of transfection of all non-host heterologous bacterial species tested increased one or more orders of magnitude in producing the progeny phages and/or the infectious intermediates. Using the improved heterologous transfection systems, it has become clearer that a strong suppression system operates on the processes of phiX174 progeny phage production and not on those of phiX174 dougle-stranded replicative form DNA synthesis in the heterologous bacterial cells. Similar stimulatory effects of this washing procedure were observed in the homologous transfection. With this improved assay system, even less than 100 molecules of phage phiX174 DNA can be detected and the number of molecules can be determined with accuracy.  相似文献   

18.
Summary A large number of Caulobacter mutants resistant to DNA or RNA phages were isolated. These phage-resistant mutants exhibited phenotypic variations with respect to cell motility and sensitivity to other phages.The majority of the mutants was resistant to both DNA and RNA phages tested. In addition, these mutants were either motile or non-motile. The analysis of spontaneous revertants from these mutants indicated that a single mutation is involved in these phenotypic variations. Other mutants were resistant to RNA phages and only to a certain DNA phage tested, and were also motile or non-motile.Several temperature-sensitive phage-resistant mutants were also isolated. One of them, CB13 ple-801, exhibited the wild type phenotype when grown at 25°C. However, at a higher temperature (35°C), the mutant cells became non-motile and resistant to both DNA and RNA phages. These phenotypes seem to be attributed to the concommitant loss of flagella, pili and phage receptors. In other respects (cell growth and morphology, and asymmetric stalk formation), CB13 ple-801 was normal at 35°C. The spontaneous revertants from CB13 ple-801 simultaneously regained the wild type phenotypes in all respects.It is suggested that a single mutation pleiotropically affects the formation of flagella, pili and phage receptors.  相似文献   

19.
N4-Aminocytidine, a nucleoside analog, is a potent mutagen towards phages, bacteria, Drosophila and mammalian cells in culture. In vitro, biochemical studies indicate that this reagent acts by being incorporated into DNA. To elucidate the mechanism of N4-aminocytidine mutagenesis, it is essential to identify the nature of DNA sequence alterations taking place during the mutagenesis. We have analyzed the nucleotide sequence changes in the lac promoter-lacZ alpha region of M13mp2 phage induced by treatment of phage-infected Escherichia coli with N4-aminocytidine. The sequence alterations of DNA samples from 89 mutants of the phage were determined. These mutants had single point mutations, except one mutant, in which a double point mutation was detected. Several hot spots were found: however, there are no apparent relations to particular DNA sequences regarding the locations of these spots. All the mutations are transitions; neither transversions nor deletions/insertions were found. A feature in these transitions is that the A/T to G/C and G/C to A/T changes occur at approximately equal rates. The overall picture of the mutagenesis is consistent with a scheme in which misincorporation and misreplication caused by the modified cytosine structure are the key steps in the DNA replication leading to transitions. Similar nucleotide alterations were found for the mutagenesis induced by an alkylated derivative, N'-methyl-N4-aminocytidine. N4-Aminocytidine also induced reversions of these mutants; both A/T to G/C and G/C to A/T transitions again took place.  相似文献   

20.
Ultraviolet irradiation or nitrosoguanidine treatment of Escherichia coli K-12 strain JE3100 (F'(8)/fla pil) led to the isolation of six mutants defective in F pili function. The defects were shown to be caused by mutations in the F factor. The mutants retained conjugal fertility, although they were less efficient than parental F'(8) strain, and continued to synthesize F pili. Three of the mutants (strains KE196, 198, and 200) had lost sensitivity to male-specific MS2 phage, and the other three (strains KE161, 163, and 164) were insensitive to Qbeta and f1 as well as MS2 phages. F pili on strains KE196, 198, and 200 cells continued to adsorb MS2 phage, whereas those of strains KE161, 163, and 164 did not adsorb MS2 phage. The correlation of the mutant phenotypes with those of other F mutants reported in the literature is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号