首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of chrysin derivatives were prepared and evaluated for their inhibitory activities of cyclooxygenase-2 catalyzed prostaglandin production. Chrysin derivatives were prepared from 2-hydroxyacetophenone, 2,4-dihydroxyacetophenone and 2,6-dihydroxyacetophenone in 2 to 4 steps, respectively. Methxoylated chrysin derivatives were converted to the corresponding hydroxylated chrysin derivatives by the reaction with BBr(3) in good yields. The inhibitory activity of the chrysin derivatives against prostaglandin production from lipopolysaccharide-treated RAW 264.7 cells was measured. We found that chrysin derivatives with 3',4'-dichloro substituents (5e, 6e and 7e) exhibited good inhibitory activity of prostaglandin production.  相似文献   

2.
Lamm AS  Reynolds WF  Reese PB 《Phytochemistry》2006,67(11):1088-1093
Stemodane and stemarane diterpenes isolated from the plant Stemodia maritima and their dimethylcarbamate derivatives were fed to growing cultures of the fungi Cunninghamella echinulata var. elegans ATCC 8688a and Phanerochaete chrysosporium ATCC 24725. C. echinulata transformed stemodin (1) to its 7alpha-hydroxy- (2), 7beta-hydroxy- (3) and 3beta-hydroxy- (4) analogues. 2alpha-(N,N-Dimethylcarbamoxy)-13-hydroxystemodane (6) gave 2alpha-(N,N-dimethylcarbamoxy)-6alpha,13-dihydroxystemodane (7) and 2alpha-(N,N-dimethylcarbamoxy)-7alpha,13-dihydroxystemodane (8). Stemodinone (9) yielded 14-hydroxy-(10) and 7beta-hydroxy- (11) congeners along with 1, 2 and 3. Stemarin (13) was converted to the hitherto unreported 6alpha,13-dihydroxystemaran-19-oic acid (18). 19-(N,N-Dimethylcarbamoxy)-13-hydroxystemarane (14) yielded 13-hydroxystemaran-19-oic acid (17) along with the two metabolites: 19-(N,N-dimethylcarbamoxy)-2beta,13-dihydroxystemarane (15) and 19-(N,N-dimethylcarbamoxy)-2beta,8,13-trihydroxystemarane (16). P. chrysosporium converted 1 into 3, 4 and 2alpha,11beta,13-trihydroxystemodane (5). The dimethylcarbamate (6) was not transformed by this microorganism. Stemodinone (9) was hydroxylated at C-19 to give 12. Both stemarin (13) and its dimethylcarbamate (14) were recovered unchanged after incubation with Phanerochaete.  相似文献   

3.
The four possible isomers 16beta-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 1, 16alpha-hydroxymethyl-5alpha-androstane-3beta,17beta-diol 2, 16beta-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 3 and 16alpha-hydroxymethyl-5alpha-androstane-3beta,17alpha-diol 4 with proven configuration were converted into the corresponding 16beta-methyl-5alpha-androstane-3beta,17beta-diol 5, 16alpha-methyl-5alpha-androstane-3beta,17beta-diol 6, 16beta-methyl-5alpha-androstane-3beta,17alpha-diol 7, 16alpha-methyl-5alpha-androstane-3beta,17alpha-diol 8, furthermore into the 16beta-methyl-17beta-hydroxy-5alpha-androstane-3-one 13, 16alpha-methyl-17beta-hydroxy-5alpha-androstan-3-one 14, 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3-one 15 and 16alpha-methyl-17alpha-hydroxy-5alpha-androstan-3-one 16. The steric structures of the resulting epimers were determined by means of 1H-, and 13C-NMR spectroscopy. In this way, comparison was possible with the C-16 epimers 5, 6 and 13, 14 prepared earlier by a different route, and the series of isomers could be completed with the steric structures of 16beta-methyl-17alpha-hydroxy-5alpha-androstan-3beta-ol 7 and 16alpha-methyl-17alpha-hydroxy-5alpha 8 and with their 3-keto derivatives 15 and 16. The relative binding affinities of the 16-methyl-5alpha-androstane-3beta,17-diols 5, 6, 7, 8 and 17-hydroxy-16-methyl-5alpha-androstan-3-ones 13, 14, 15, 16 were studied. The introduction of a 16-methyl substituent into 5alpha-androstane molecules substantially decreases the binding affinity to the androgen receptor and 16alpha-methyl derivatives were always bound more weakly than the 16beta-methyl isomers.  相似文献   

4.
1. 7- and 12-Methylbenz[a]anthracene were converted by rat-liver homogenates into the corresponding hydroxymethyl derivatives, products that are probably the 8,9-dihydro-8,9-dihydroxy and the 5,6-dihydro-5,6-dihydroxy derivatives, and a number of phenolic products. 2. Both hydrocarbons were converted into glutathione conjugates; that from 7-methylbenz[a]anthracene was also formed, together with 5,6-dihydro-5,6-dihydroxy- and 5-hydroxy-benz[a]anthracene, from 5,6-epoxy-5,6-dihydro-7-methylbenz[a]anthracene. 3. 7- and 12-Hydroxymethyl-benz[a]anthracene were converted into products that are probably 8,9-dihydro-8,9-dihydroxy derivatives, and into phenols. 4. The preparation of a number of derivatives of the hydrocarbons is described. 5. The oxidation of the hydrocarbons with lead tetra-acetate was investigated.  相似文献   

5.
Reaction of adenine (1a) or cytosine (1b) with excess 1,4-dichloro-2-butyne catalyzed by K2CO3 in (CH3)2SO gave the 4-chloro-2-butynyl derivatives 2a and 2b. The latter were converted to the 4-hydroxy-2-butynyl compounds 3a and 3b by refluxing in 0.1 M HCl. Isomerization of 3a in 0.1 M NaOH at 100 degrees C for 1 h gave an equilibrium mixture of 3a and allene 4a. Pure 4a was obtained by column chromatography. Similarly, compound 3b was transformed/0.1 M NaOH, 20% aq. dioxane, 9 h, 100 degrees C/ to a mixture of 3b and 4b from which pure 4b was obtained by chromatography and crystallization. By contrast, reflux of 3a or 3b in 1 M NaOH in 50% aq. dioxane for 1 h afforded cyclized products - dihydrofuryl derivatives 5a and 5b. Hydrogenation of 4a and 5a gave 9-(4-hydroxybutyl)adenine (6a) and 9-(tetrahydro-2-furyl)adenine (7a), respectively. Scope and limitations of allenic isomerization in nucleic acid base series, spectroscopy and biological activity of the obtained products will be discussed.  相似文献   

6.
3'-Carboxymethyl-3'-deoxyadenosine derivatives were prepared from 2'-O-TBDMS-3'-[(ethoxycarbonyl)methyl]-3'-deoxyadenosine (1) via simple and efficient procedures. Conversion of 1 to its 5'-azido-5'-deoxy derivative 5 was accomplished via a novel one-pot method employing 5'-activation (TosCl) followed by efficient nucleophilic displacement with tetramethylguanidinium azide. Compound 5 was converted to 5'-[(N-methylcarbamoyl)amino] derivative 8 via one-pot reduction/acylation employing H(2)/Pd-C followed by treatment with p-nitrophenyl N-methylcarbamate. N(6)-phenylcarbamoyl groups were introduced by treatment with phenylisocyanate, and an efficient new method for lactonization of 2'-O-TBDMS-3'-[(ethoxycarbonyl)methyl]-3'-deoxyadenosines to give corresponding 2',3'-lactones was also developed. Target compounds were evaluated for anti-HIV and anti-HIV integrase activities, but were not active at the concentrations tested.  相似文献   

7.
Addition of iodine and methanol to N6,N6-dibenzoyl-9(2,3-O-carbonyl-5-deoxy-β-d-erythro-pent-4-enofuranosyl)adenine (4) selectively gives N6,N6-dibenzoyl-2′,3′-O-carbonyl-5′-deoxy-5′-iodo-4′-methoxyadenosine (5). Compound 5 can be converted into 4′-methoxyadenosine via hydrolysis of the carbonate followed by benzoylation, displacement of the 5′-iodo function by benzoate ion, and hydrolysis with ammonia. Configurational assignments are based upon comparisons of 1H- and 13C-n.m.r. spectra with those of previously characterised analogues in the uracil series and by borate electrophoresis. Intermediates in the above scheme have also been converted into 5′-amino-5′-deoxy-4′-methoxyadenosine, 4′-methoxy-5′-O-sulfamoyladenosine, and ethyl 4′-methoxyadenosine-5′-carboxylate, each of which is a 4′-methoxy analogue of biologically active derivatives of adenosine.  相似文献   

8.
The synthesis of model 7 deazapurine derivatives related to tubercidin and toyocamycin has been performed. Tubercidin derivatives were obtained by simple conversion of the amino group of the heterocyclic moiety of the starting 7-deazadenosine compounds, into a hydroxyl group. Preparation of toyocamycin derivatives was accomplished by treatment of the silylated 6-bromo-5-cyanopyrrolo[2,3-d]pyrimidin-4-one with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-d-ribofuranose. The glycosylation reaction afforded a mixture of 8-bromo 7-cyano 2',3',5' tri-O-benzoyl 7-deazainosine and 6-bromo-5-cyano-3-(2',3',5'-tri-O-benzoyl-beta-d-ribofuranosyl)pyrrolo[2,3-d]-pyrimidin-4-one isomers: The structures were assigned on the basis of NMR spectroscopy studies. Next deprotection treatment gave the novel 7-deazainosine ribonucleosides.  相似文献   

9.
Preparative methods were developed for reduction with NaBH4 at 0 of 3 beta, 5 alpha- and 3 alpha, 5 beta-tetrahydroaldosterone (1) and (12) to their respective 20 alpha-ol derivatives 2a and 13a. Corroboration of structures was obtained by periodate oxidations to the lactols 3b and 14b and thence, by further oxidation, to the lactones 4 and 15 respectively; these lactones were also independently obtained from 1 and 12. Reduction with NaBH4 at 80 degrees C converted 1 and 12 into 18-hydroxy-3 beta, 5 alpha, 20- and 18-hydroxy-3 alpha, 5 beta, 20-hexahydrocorticosterone 6a and 17a respectively, which were mixtures of epimers at C-20. Compound 17a could also be prepared by reduction of the lactone 21 with sodium aluminum bis-(methoxyethoxy) hydride. Again, periodate oxidations of 6a and 17a gave the lactols 7b and 22b and thence, by Jones oxidation, the diketolactones 8 and 23, which were also prepared from 18-hydroxy-11-dehydrocorticosterone (10) and 18-hydroxycorticosterone (24) respectively. Improved conditions for reduction with Clostridium paraputrificum permitted convenient conversion of aldosterone (11), the corresponding 18 leads to 11 lactone 18a and 18-hydroxycorticosterone (24) into their 3 alpha, 5 beta-tetrahydro derivatives.  相似文献   

10.
As a part of our continuing research on NPY-Y5 receptor antagonists in the series of novel 6-methoxybenzo[a]cycloheptene derivatives, we discovered a novel skeleton, 7-methoxy-1-hydroxytetraline 7 which had been used as an intermediate, to be more suitable for increasing potencies leading to compound 3 (FR230481). Additionally, we discovered that the naphthalenesulfonamide moiety which was thought to be an essential pharmacophore could be replaced by the 5-chlorobenzothiazolin-3-acetic acid moiety to lead to potent compound 4 (FR233118). The structure-activity relationships on compounds 3,4 and their related derivatives are described. Unfortunately, although compounds 3 and 4 had very high affinities for Y5 receptors, their poor permeabilities to brain were shown by exo-vivo binding assays when orally administered.  相似文献   

11.
In a one step procedure, L-1-O-benzyl-2-O-methyl-chiro-inositol (1) was acetalized to the L-muco-inositol derivatives 2, 3 and D-2-O-benzyl-3-O-cyclohexylcarbamoyl-4-deoxy-4-(N,N'-dicyclohexylureido)-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (4). Complete conversion of L-1-O-benzyl-6-O-cyclohexylcarbamoyl-3-O-formyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (3) into L-1-O-benzyl-6-O-cyclohexylcarbamoyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (2) is feasible by deformylation in boiling methanolic triethylamine. Furthermore, stepwise deprotection of 2 and 4 is described. Thus, compounds 5, 10, and 7 were obtained by decarbamoylation of 2, 4, and 6, respectively, with boiling methanolic sodium methoxide. The trichloroethylidene group of L-1-O-benzyl-2-O-methyl-4,5-O-trichloroethylidene-muco-inositol (5) was removed in a two step procedure (hydrodechlorination-deacetalization) via the ethylidene acetal 7 to give L-1-O-benzyl-2-O-methyl-muco-inositol (9). On refluxing D-chiro-inositol derivative 4 with 99% acetic acid, the ureido moiety was cleaved generating D-2-O-benzyl-4-cyclohexylamino-3-O-cyclohexylcarbamoyl-4-deoxy-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (11). By contrast, cleavage of the ureido moiety of 10 was relatively difficult. The corresponding D-2-O-benzyl-4-cyclohexylamino-4-deoxy-1-O-methyl-5,6-O-trichloroethylidene-chiro-inositol (12) was only formed in small amounts. The structures of 1, 3 and 10 were confirmed by X-ray analysis.  相似文献   

12.
The sulfomethylation of piperazine and the polyazamacrocycles, [9]aneN3, [12]aneN3, [12]aneN4, and [18]aneN6 with formaldehyde bisulfite in aqueous medium at various pH values is described. The number of methanesulfonate groups introduced into these structures was found to be largely determined by pH. At neutral pH, disubstituted products of [9]aneN3, [12]aneN3, [12]aneN4 are formed and, in the latter case, the trans-1,7-bis(methanesulfonate) isomer was predominant. Similarly, a single, symmetrical trisubstituted product was formed with [18]aneN6 at neutral pH. Monomethanesulfonated products of these same polyaza compounds were formed at more acidic pH's. These sulfomethylated products were used as an entry into a series of mono- and diacetate, phosphonate, and phosphinate derivatives of [9]aneN3, [12]aneN3, and [12]aneN4. The sulfonate groups may be converted to acetates without isolation of intermediates by using cyanide to displace the sulfonate(s) followed by acidic hydrolysis. The aminomethanesulfonates may also be oxidatively hydrolyzed by using aqueous triiodide as a prelude to the preparation of aminomethanephosphonates or aminomethanephosphinates.  相似文献   

13.
2,6-di-O-benzyl- (9), 2-O-benzyl-3,4-O-isopropylidene- (19), and 2-O-benzyl-6-O-m-chlorobenzoyl-L-arabino-hexos-5-ulose (20) have been prepared using 4'-deoxy-4'-eno- and 6'-deoxy-5'-eno lactose dimethyl acetal derivatives 7 and 14 as key intermediates. The synthesis of enol ethers 7 and 14 has been performed with good yields by base-promoted elimination of acetone or p-toluenesulfonic acid from 2',6'-di-O-benzyl-, and 6'-O-p-toluenesulfonyl-2,3:5,6:3',4'-tri-O-isopropylidenelactose dimethyl acetal, respectively. The epoxidation with MCPBA of 7 and 14 in methanol or dichloromethane furnishes C-5'-methoxy and C-5'-m-chlorobenzoyloxy derivatives, easily transformed with good yields into L-arabino 5-ketoaldohexoses 9, 19 and 20.  相似文献   

14.
The fungal laccases catalyzed oxidation of 1-(3,4-dimethoxyphenyl)-1-propene (2) with dioxygen in acetate buffer (pH 4.5) producing 1-(3,4-dimethoxyphenyl)propane-1,2-diol (4) and its 1-O-acetyl and 2-O-acetyl derivatives 5 and 6, and 3,4-dimethoxybenzaldehyde (7). However, in phosphate buffer (pH 5.9), the same reaction produced only 4 and 7. When 4 was treated in the same fashion in the phosphate buffer, it was converted into 7 with more than 95 mol% yield. This, together with the formation of 5 and 6 in the acetate buffer, showed that 2 is converted into 3–5 via 1-(3,4-dimethoxyphenyl)propane-1,2-epoxide (3) in the acetate buffer in the presence of ABTS. The major reaction of fungal laccase-catalyzed oxidation of 2 with dioxygen in the presence of ABTS is epoxidation of the double bond conjugated to the aromatic ring.  相似文献   

15.
Methods of synthesizing a series of chemically-defined AMP, ADP, ATP, adenylyl imidodiphosphate and pyrophosphate derivatives suitable for affinity chromatography are extensively described. Each derivative has a single primary amino group at the end of a hexamethylene ;spacer' chain for attachment to CNBr-activated agarose. The synthesis of the derivative where the ;spacer' arm is attached directly to the 8 position of the adenine ring to produce 8-(6-aminohexyl)amino-AMP involves the direct bromination of AMP in the 8 position followed by displacement of the halogen by 1,6-diaminohexane. This monophosphate derivative can then be converted into the corresponding di- or triphosphate forms by direct phosphate condensation with carbonyl di-imidazole. A second series of adenosine phosphate derivatives with the phosphate moieties unsubstituted has been similarly prepared from N(6)-(6-aminohexyl)-AMP (Guilford et al., 1972). A third type of ligand has been synthesized by condensing the phosphoryl imidazolide of AMP with 6-aminohex-1-yl phosphate. This compound, P(1)-(6-aminohex-1-yl) P(2)-(5'-adenosyl) pyrophosphate, has an unsubstituted adenine ring. The synthesis of a fourth type of ligand, 6-aminohex-1-yl pyrophosphate, was done by heating 6-aminohexan-1-ol with crystalline pyrophosphoric acid under reduced pressure. The structures of the synthesized compounds were confirmed by chemical, electrophoretic and chromatographic methods and by u.v. spectrometry. The general applicability of the synthetic methods used is discussed in relation to the preparation of other affinity adsorbents. Examples are given where these derivatives have been successful in reversibly binding dehydrogenases, kinases and myosin and its proteolytic subfragments. The partial purification of rat liver glucokinase on an ADP derivative is shown.  相似文献   

16.
The thioamide derivatives 3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-[(2-methyl-1-thioxo- propyl)amino]thymidine 1 and 3'-deoxy-5'-O-(4,4'-dimethoxytrityl)-3'-((6-([(9H-(fluo-ren-9- ylmethoxy)carbonyl]-amino)-1-thioxohexyl)amino) thymidine 2 were synthesized by regioselective thionation of their corresponding amides 7 and 8 with 2,4-bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide (Lawesson's reagent). The thioamides were converted into the corresponding 5'-triphosphates 3 and 4. Compound 3 was chosen for DNA sequencing experiments and 4 was further labelled with fluorescein.  相似文献   

17.
The syntheses of the novel C-5 substituted pyrimidine derivatives of l-ascorbic acid containing free hydroxy groups at C-2' (6-10) or C-2' and C-3' (11-15) positions of the lactone ring are described. Debenzylation of the 6-chloro- and 6-(N-pyrrolyl)purine derivatives of 2,3-O,O-dibenzyl-l-ascorbic acid (16 and 17) gave the new compounds containing hydroxy groups at C-2' (18) and C-2' and C-3' (19 and 20). Z- and E-configuration of the C4'C5' double bond and position of the lactone ring of the compounds 6-9 were deduced from their one- and two-dimensional (1)H and (13)C NMR spectra and connectivities in NOESY and HMBC spectra. Compounds 15 and 18 showed the best inhibitory activities of all evaluated compounds in the series. The compound 15 containing 5-(trifluoromethyl)uracil showed marked inhibitory activity against all human malignant cell lines (IC(50): 5.6-12.8 microM) except on human T-lymphocytes. Besides, this compound influenced the cell cycle by increasing the cell population in G2/M phase and induced apoptosis in SW 620 and MiaPaCa-2 cells. The compound 18 containing 6-chloropurine ring expressed the most pronounced inhibitory activities against HeLa (IC(50): 6.8 microM) and MiaPaCa-2 cells (IC(50): 6.5 microM). The compound 20 with 6-(N-pyrrolyl)purine moiety showed the best differential inhibitory effect against MCF-7 cells (IC(50): 35.9 microM).  相似文献   

18.
2,2'-Anhydro-1-(3'-deoxy-3'-iodo-5'-O-trityl-beta-D-arabinofuranosyl) thymine (2) was synthesized from 2',3'-didehydro-3'-deoxythymidine (DHT). Compound 2 was readily converted into the 2',3'-anhydrolyxofuranosyl derivatives 4-6. Treatment of 4a with some nucleophiles (N3-, OMe-, Cl-) gave the corresponding 3'-substituted arabinosyl nucleosides (7a,c,e) together with the minor xylosyl isomers (8a,c,d). 7a,c,e were deprotected to 7b,d,f, respectively.  相似文献   

19.
2,3,1',3'4',6'-Hexa-O-benzylsucrose was obtained by mild acid-catalysed hydrolysis of the 4,6-O-isopropylidene derivative and then converted into its 4,6-di-O-mesyl derivative. Selective displacement of this disulphonate with fluoride anion (from tetrabutylammonium fluoride) then afforded the 6-fluoro-4-mesylate. Removal of the protecting groups yielded 6-deoxy-6-fluorosucrose, which was characterised as its crystalline hepta-acetate. A derivative of 6-deoxy-6-fluoro-galacto-sucrose was formed when the above 6-fluoro-4-mesylate was subjected to nucleophilic displacement with benzoate anion.  相似文献   

20.
For the purpose of developing a transglutaminase inhibitor which could be effective in physiological and pharmacological studies, a series of phenylthiourea derivatives of alpha, omega-diaminoalkanes were designed, synthesized, and evaluated kinetically as inhibitors of transglutaminases. A homologous series of compounds of the structure phenylthiourea-(CH2)n-NH2, where n = 2, 3, 4, 5, and 6, were tested for the inhibition of both guinea pig liver transglutaminase-catalyzed amine incorporation into various glutamine-containing substrates and plasma transglutaminase (factor XIIIa)-catalyzed amine incorporation into fibrin and fibrin cross-linking. It was found that the inhibitory activity of the compounds increases with increasing number of methylene groups in the side chain up to a maximum of n = 5. A further increase in the length of the methylene side chain to n = 6 results in decreased activity. The Ki value (4.9 X 10(-5) M) of 1-(5-aminopentyl)-3-phenylthiourea (PPTU) (n = 5) for the inhibition of guinea pig transglutaminase-catalyzed amine incorporation into the B chain of oxidized insulin is in close agreement to its Km(app) value (7.1 X 10(-5) M) obtained using 14C-labeled PPTU. PPTU was also found to be a potent inhibitor of plasma transglutaminase-catalyzed fibrin cross-linking. The finding that the specificity of the alkylamines for inhibition is correlated with the length of their methyl side chains is compatible with those reported for aliphatic amines and monodansylcadaverine analogues (where dansyl is 5-dimethylaminonaphthalene-1-sulfonyl). The phenylthiourea derivatives, however, are far less toxic in mice than monodansylcadaverine as indicated by their LD50 values: PPTU, 400 +/- 25 mg/kg; and monodansylcadaverine, 160 +/- 20 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号