首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Summary Short-term manometric experiments with bacteria-free cultures of Anabaena cylindrica showed that the close dependency of nitrogen fixation upon photosynthesis could be temporarily eliminated in nitrogen-starved cells. Initial rates of nitrogen uptake by these cells in the absence of carbon dioxide were equally rapid in the light and dark, decreasing and finally ceasing after two hours. Continued steady nitrogen uptake was only maintained for long periods in the presence of carbon dioxide in the light. In the dark, nitrogen uptake was accompanied by carbon dioxide evolution.More oxygen was evolved in the light by cells fixing nitrogen than by those incubated under argon. This additional oxygen evolution could be accounted for by extra carbon dioxide fixation in the presence of nitrogen.Of a number of organic compounds tested, only sodium pyruvate stimulated nitrogen fixation. This stimulation was achieved both in the light and dark and in the presence and absence of carbon dioxide, showing that the role of pyruvate was other than acting as a carbon skeleton.Three metabolic inhibitors, cyanide and chlorpromazine (chiefly respiratory) and phenylurethane (photosynthetic) differentially inhibited photosynthesis and nitrogen fixation. The latter inhibitor had a more marked effect on photosynthesis while the two chiefly respiratory inhibitors had a stronger effect on nitrogen fixation.  相似文献   

2.
P.A. Edge  T. R. Ricketts 《Planta》1977,136(2):159-162
Studies on the mean cellular carbohydrate contents of Platymonas striata Butcher under conditions of nitrogen-starvation, and after refeeding these starved cultures with either nitrate or ammonium ions (growing under continuous illumination or with an alternating light/dark regime) have shown that nitrogen-starved cells accumulated abnormal amounts of cellular carbohydrate and that nitrogen refeeding produced a marked drop in the cellular carbohydrate. Cells grown in a light/dark regime accumulated less carbohydrates than those grown in continuous light. The mean cellular carbohydrate levels 16 h after nitrogen refeeding were still much in excess of those of cells grown with normal nutrition. It was therefore suggested that the differences in nitrogen uptakes in this period — when comparing either the uptake of cells grown in continuous light with that of cells grown in a light/dark regime; or when comparing the uptakes of cells presented with either nitrate or ammonium ions and grown in a light/dark regime —cannot be directly due to shortages of carbohydrate for the provision of carbon skeletons for nitrogen assimilation.  相似文献   

3.
Summary Blending Anabaena cylindrica cultures results in a loss of nitrogenase activity which is correlated with the breakage of the filaments at the junctions between heterocysts and vegetative cells. Oxygen inhibition of nitrogen fixation was significant only above atmospheric concentrations. Nitrogen-fixation activities in the dark were up to 50% of those observed in the light and were dependent on oxygen (10 to 20% was optimal). Nitrogenase activity was lost in about 3 h when cells were incubated aerobically in the dark. Re-exposure to light resulted in recovery of nitrogenase activity within 2 h. Blending, oxygen, or dark pre-incubation had similar effects upon cultures grown under air or nitrogen and did not inhibit light-dependent CO2 fixation. We conclude that heterocysts are the sites of nitrogenase activity and propose a model for nitrogen fixation by Anabaena cylindrica.  相似文献   

4.
When cells of Synechocystis strain PCC 6308 are starved for nitrogen, the amount of stored carbohydrate increases, the phycocyanin to chlorophyll a ratio decreases, and the rates of oxygen evolution and of carbon dioxide fixation decrease. When nitrate-nitrogen is replenished, the amount of carbohydrate decreases, the rate of oxygen evolution increases immediately, preceeding the increase in phycocyanin or carbon dioxide fixation. The rate of respiration first increases and then decreases upon nitrogen addition. Nitrogen-starved cells show no variable fluorescence; variable fluorescence recovered in parallel with oxygen evolution. This suggests that photosystem II is inactive in nitrogen depleted cells and not blocked by a build up of metabolic endproducts. Since carbon dioxide fixation does not increase until two to four hours after nitrate is replenished to nitrogen starved cells, it is suggested that reducing power may first be needed within the cell for some other process than photosynthesis, such as nitrate reduction.  相似文献   

5.
Heterotrophic activity in macroalgae has been little studied, but the red macroalga Grateloupia doryphora is known to grow in light at a higher rate in a glycerol-containing medium than in seawater. The effects of 0·1 M exogenous glycerol in seawater (SW90-gly) on the respiration rate of G. doryphora and the role played by light were investigated. The algae pretreated for 2 h in the light and in SW90-gly evolved oxygen and fixed carbon dioxide (H14CO3 ?), but also evolved radioactive 14CO2 from [14C]glycerol. The rate of oxygen evolution was lower than that of samples in seawater, due to a high respiration rate and/or a partial inhibition of photosynthesis induced by glycerol. In contrast, the rate of inorganic carbon fixation was higher in SW90-gly than in control samples in seawater, suggesting that non-photosynthetic patterns were operating. In darkness, after pretreatment in the light in SW90-gly, samples showed a high oxygen uptake rate just after the light was turned off. Twenty minutes of darkness were enough to decrease this high respiration rate to that of samples in seawater. The oxygen uptake observed in all experiments with glycerol was mitochondrial as it was inhibited by potassium cyanide and salicylhydroxamic acid (SHAM). Pretreatment of samples in the light in SW90-gly with the photosynthetic inhibitor DCMU did not inhibit ensuing dark respiration, thus providing evidence for a non-photosynthetic effect of the light. The highest dark respiration rate was observed after the samples were pretreated in monochromatic blue light in glycerol-containing media.  相似文献   

6.
Duke CS  Allen MM 《Plant physiology》1990,94(2):752-759
Synechocystis sp. strain PCC6308 cells were starved for nitrogen for 5 days. The polypeptide compositions of whole cell extracts and washed membranes of nitrogen-replete and nitrogen-starved cells were compared by one- and two-dimensional electrophoresis. Immunoblotting of one-dimensional gels indicated that pelletable ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was depleted in cells starved for nitrogen, while levels of soluble Rubisco were comparable in nitrogen-starved and nitrogen-replete cells. This is consistent with the hypothesis that pelletable Rubisco may serve as a nitrogen reserve in Synechocystis 6308. Other polypeptides were differentially enriched in the membrane or soluble fractions of nitrogen-replete cells or nitrogen-starved cells, suggesting nitrogen starvation may alter partitioning of polypeptides into soluble and membrane fractions. Degradation of abundant polypeptides during nitrogen starvation appeared to cause an effective magnification of less abundant polypeptides in the molecular mass range of 20 to 40 kilodaltons, as shown by two-dimensional electrophoresis. A 42-kilodalton thylakoid carotenoid protein identified by immunoblotting was conserved in membranes from nitrogen-starved cells. This may be functional for cells depleted of pigment and thus exposed to higher light levels because of decreased self-shading.  相似文献   

7.
In vivo tracer studies with 14C have been performed to help determine pathways of incorporation of newly assimilated nitrogen into N2-fixing cells of Anabaena cylindrica. After photosynthesis in Ar:O2:14CO2 for 30 min, the addition of N2 or NH 4 + resulted in increased rates of 14CO2-incorporation both in the light and dark, and in increased incorporation of 14C into amino acids at the expense of sucrose and sugar phosphates. Evidence of enhanced sucrose catabolism and increased pyruvate kinase activity was obtained on adding nitrogen, and, of the 14C-labelling entering the tricarboxylic acid cycle, more appeared in citrate and 2-oxoglutarate than in malate and oxaloacetate. The kinetics of 14C-incorporation into various amino acids suggest that in the light and dark the most important route of primary ammonia assimilation involves glutamine synthetase and that glutamate, aspartate, glycine and probably alanine are formed secondarily from glutamine.  相似文献   

8.
1. Extracts of Pseudomonas sp. grown on butane-2,3-diol oxidized glyoxylate to carbon dioxide, some of the glyoxylate being reduced to glycollate in the process. The oxidation of malate and isocitrate, but not the oxidation of pyruvate, can be coupled to the reduction of glyoxylate to glycollate by the extracts. 2. Extracts of cells grown on butane-2,3-diol decarboxylated oxaloacetate to pyruvate, which was then converted aerobically or anaerobically into lactate, acetyl-coenzyme A and carbon dioxide. The extracts could also convert pyruvate into alanine. However, pyruvate is not an intermediate in the metabolism of glyoxylate since no lactate or alanine could be detected in the reaction products and no labelled pyruvate could be obtained when extracts were incubated with [1-14C]glyoxylate. 3. The 14C was incorporated from [1-14C]glyoxylate by cell-free extracts into carbon dioxide, glycollate, glycine, glutamate and, in trace amounts, into malate, isocitrate and α-oxoglutarate. The 14C was initially incorporated into isocitrate at the same rate as into glycine. 4. The rate of glyoxylate utilization was increased by the addition of succinate, α-oxoglutarate or citrate, and in each case α-oxoglutarate became labelled. 5. The results are consistent with the suggestion that the carbon dioxide arises by the oxidation of glyoxylate via reactions catalysed respectively by isocitratase, isocitrate dehydrogenase and α-oxoglutarate dehydrogenase.  相似文献   

9.
Extracts from the nitrogen fixing blue-green algaAnabaena cylindrica catalyse a pyruvate decarboxylation, which is dependent on ferredoxin and stimulated by coenzyme A, ATP and a SH-protecting compound. This pyruvate clastic reaction is completely reversible: The net synthesis of pyruvate requires CO2, acetyl-coenzyme A and reduced ferredoxin. Preparations fromAnabaena cylindrica also catalyse the exchange reaction between CO2 and the carboxyl group of pyruvate. Thus the enzyme fromAnabaena cylindrica has essentially all the characteristics known for the pyruvate: ferredoxin oxidoreductase from anaerobic bacteria.The activity of the pyruvate: ferredoxin oxidoreductase inAnabaena grown with ammonia is lower than one-fifth of that in cells grown with molecular nitrogen or nitrate as the nitrogen source. From this, it will be concluded that a physiological role of the reaction is to generate reduced ferredoxin for the assimilation of nitrogen to ammonia. The pyruvate synthesis is probably not physiological inA. cylindrica.In addition, extracts fromA. cylindrica also catalyse a ferredoxin dependent decarboxylation of -ketoglutarate. It is not yet clear, whether this ketoglutarate cleavage has a function inA. cylindrica.  相似文献   

10.
The dark reaction of the short day plant Lemna perpusilla was investigated. It was found that 3-phosphoglycerate and pyruvate (10?6M) increased the flowering rate in the presence of nitrates. Pyruvate-2-14C was added to the culture solution during two hours of the dark reaction and 14C was incorporated into serine, aspartate and glutamate. It was postulated that pyruvate reacted with a nitrogen source forming an intermediate, possibly aspartate, which was further converted into serine. L. perpusilla failed to flower when the dark period was interrupted with red light and as a result endogenous serine accumulated in a high concentration. The dark reaction of L. perpusilla, in which serine was involved, required (1) oxygen, (2) ATP, (3) moderate temperature, and (4) an enzyme system.  相似文献   

11.
Exogenous pyruvate added to cultures of the bluegreen alga, Anabaena cylindrica stimulated nitrogenase activity (measured by acetylene reduction) only in the dark under low pO2 (0.05 atmospheres). Under aerobic conditions or in the light, stimulation was absent and replaced by an inhibition of activity above 5 mM added pyruvate. The curve of nitrogenase activity versus oxygen concentration had a similar maximal value of ethylene production with or without added pyruvate, but in the presence of pyruvate this maximum occurred at 0.05 atmospheres O2, whilst in the absence of pyruvate the maximum occurred at 0.10 atmospheres O2. Malate, citrate, α-ketoglutarate, glucose and fructose were tested also, but none gave a similar effect to pyruvate. Addition of 14C-pyruvate and autoradiography indicated that exogenous pyruvate is metabolized through the interrupted Krebs cycle. These results are explained in terms of the activity of pyruvate: ferredoxin oxidoreductase and the ATP-induced oxygen sensitivity of nitrogenase.  相似文献   

12.
The assimilation of 14C-sodium bicarbonate has been measured in Scenedesmus obliquus as 1) photosynthesis, 2) photoreduction (light dependent incorporation of carbon dioxide by hydrogen adapted cells under conditions where photosynthesis is inoperative), and 3) the oxyhydrogen reaction (dark assimilation of carbon dioxide by hydrogen adapted cells in an atmosphere of hydrogen and 1% oxygen). Degradation of the glucose formed in each of these reactions using the Leuconostoc technique establishes the participation of the reductive pentose phosphate cycle.  相似文献   

13.
Methylamine uptake in nitrogen-starved Chlorella pyrenoidosa Beij. follows Michaelis-Menten kinetics: maximum uptake is about 1.6 nmol μl?1· cells · min?1, half-saturation occurs at 4 μM methylamine, and the slope in the range where uptake is proportional to concentration is 0.4 nmol μl?1· min?1·μM?1. In cells grown in the presence of a non-limiting nitrogen concentration, methylamine uptake is directly proportional to concentration up to at least 0.5 mM, and the slope is 1/500 that for starved cells. Similar uptake kinetics have been reported for Penicillium chrysogenum and attributed to an inducible “ammonium permease.” Apparently, a similar permease occurs in algae.  相似文献   

14.
Glycine was decarboxylated only by intact mitochondria to yield carbon dioxide, formaldehyde, and ammonia, probably present as pyridoxamine phosphate. The formaldehyde could become incorporated into serine, via N5N10 methylene-FH4, and a requirement was demonstrated for pyridoxal phosphate. Similarly, glyoxylate with pyridoxamine phosphate was also decarboxylated to formaldehyde and carbon dioxide. Glyoxylate could be decarboxylated by at least two additional pathways. One consisted of oxidative decarboxylation yielding formate and carbon dioxide, and requiring thiamine pyrophosphate, manganese ions, and oxygen. The other consisted of glyoxylate condensation with 2-oxoglutarate, yielding carbon dioxide and an intermediate which, upon decarboxylation, appeared to be hydroxylevulinic acid.  相似文献   

15.
The photosynthetic bacterium, Rhodospirillum rubrum (ATCC 11170), was tested for its ability to fix nitrogen (acetylene reduction) under aerobic and dark-anaerobic conditions. Whole cells reduced acetylene under darkanaerobic conditions if pyruvate was supplied. Reactions of the cells were inhibited less by oxygen in the dark than in the light, and the cells were capable of acetylene reduction in the presence of low levels of oxygen (0.6%) in the dark. Crude extracts of R. rubrum reduced acetylene if pyruvate and Coenzyme A were added; ferredoxin from R. rubrum greatly increased the pyruvate-driven activity in crude extracts. It was not possible to demonstrate light-driven acetylene reduction in crude extracts unless a reductant (dithionite) was added.Abbreviations Fld flavodoxin - DTT dithiothreitol  相似文献   

16.
Respiration of blue-green algae in the light   总被引:1,自引:0,他引:1  
The CO2 evolution in the light of Anabaena as well as several other blue-green algae is below 10% of the dark control. Addition of DCMU restores CO2 evolution in the light almost to the dark level. Furthermore, by adding unlabeled NaHCO3, a 14CO2 release is observed with prelabeled algal cells attaining 15 to 100% of dark control. Analysis by double-reciprocal plots exhibits a competitive relationship between added and endogenously released carbon dioxide. We conclude that CO2 evolved by respiration is immediately refixed in the light without being liberated.The degree of 14CO2 release induced by unlabeled bicarbonate in the light allows to determine true photoinhibition of respiration. Anabaena variabilis Kütz. exhibits almost no inhibition while in eight other species respiration is light-inhibited between 50 and 85% of the dark control.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - TCA trichloroacetic acid  相似文献   

17.
The trigger for the hatching behavior and determination of hatching time of the katydids, Eobiana engelhardti subtropica (Orthoptera: Tettigoniidae) have been shown to be influenced by light–dark signals or temperature. In this study, I investigated the effects of oxygen, carbon dioxide, and nitrogen on the hatching behavior and hatching time of the katydid. Eggs rarely hatched under a constant temperature of 25°C and hatched sporadically at a constant temperature of 15°C under continuous light in the air. However, when eggs were exposed to 100% oxygen or a mixture of oxygen and nitrogen (2:1 or 1:1), hatching occurred within a few seconds. Hatching behavior was directly triggered by high concentrations of oxygen. It was inhibited by exposure to 100% carbon dioxide, 100% nitrogen, or a mixture of oxygen and nitrogen (1:2). The hatching time, determined by the temperature fall (transfer from 25°C to 15°C), was delayed by these gases, and was reset by the transfer back of eggs to the air. This suggests the existence of a time-measuring mechanism that is triggered by the transfer of eggs to the air. These results, indicating that hatching behavior was directly triggered by high concentrations of oxygen and that hatching time was set by the transfer from carbon dioxide or nitrogen to the air, are new findings to the best of my knowledge.  相似文献   

18.
Thalli of the lichen Slereocaulon paschale (L.) Fr. were prctreated in the light (light activated) or in the dark (dark starved). In short-time experiments with both light activated arid dark starved thalli, the nitrogenasc activity was higher in the light than in the dark, Light activated thalli had a very much higher rale of C2H2 reduction than dark starved thalli, both in the light and in the dark. The dark starved lhalli showed increasing nilrogenase activity when incubated in the light. Either light or oxygen was necessary for nitrogenase activity in light activated thalli. and up to about 10kPa oxygen they showed additive effects. Both in the light and in the dark the nitrogenase activity decreased when the oxygen partial pressure was lower than in normal air. The experimental data thus showed a short-term effect of light on nilrogenase activity by provision of ATP and reductant, and a long term effect probably by build up of reserves that were later utilized. Any immediate effect of photorespiration on nitrogenase activity could not be found in light activated thalli.  相似文献   

19.
Summary The kinetics of Cu uptake in nutritionally starved cells of the diazotrophic cyanobacteriumNostoc calcicola Bréb. have been compared with those in cells recovering from starvation. Unstarved cyanobacterial cells assimilated 97.0 nmol Cu mg–1 protein within 1 h when incubated in medium containing 40 M Cu. Uptake was markedly inhibited in carbon-starved cells and, to a lesser extent, in cells starved of nitrogen or sulphur. The intracellular concentrations of protein and photopigments were markedly lower in cells starved of carbon, nitrogen, sulphur or phosphorus, whilst that of carbohydrate was lower in cells starved of carbon, sulphur or phosphorus, but almost doubled in cells starved of nitrogen. The ability to assimilate Cu was partially restored in cells after 72 h of recovery from phosphorus or sulphur deprivation, but showed little improvement during recovery from carbon or nitrogen starvation. A possible role of phosphorus in regulating Cu transport and accumulation is discussed.  相似文献   

20.
Summary A comparison of light and dark short-term incorporation of [14C]-carbon dioxide by Rhodospirillum rubrum grown in turbidostat continuous-flow culture at two different steady states on medium containing malate has shown that the labelling of phosphate esters was the main light-dependent process. Thus, the reductive pentose phosphate cycle appears to be the major pathway of carbon dioxide assimilation in the light under these growth conditions.The labelling of glutamate was also light-dependent and was most marked in the most rapidly growing steady state culture.The assimilated [14C]carbon was transferred to metabolites of the tricarboxylic acid cycle, particularly C4-dicarboxylic acids, and the transfer involved additional carboxylations which were not light-dependent. The activity of these reactions accounted for initial high rates of carbon dioxide assimilation in the dark.In the dark assimilated [14C]carbon accumulated in succinate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号