首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted in order to determine the energy source and nature of the cation dependency of [3H]methionine transport in preimplantation mouse embryos. The energy source of methionine transport was studied at the late four-cell and early blastocyst stages. The embryos, raised in vitro, were incubated for 1 hr in inhibitor(s) of energy metabolism and then transferred for 1 hr to medium that contained inhibitor(s) and 3H-methionine. These inhibitor studies suggest that respiration and glycolysis are needed to maintain uptake of methionine in early blastocysts. Late four-cell embryos seem to utilize respiration alone for transport.The cation dependency of methionine transport was studied at the late morula and early blastocyst stages. The kinetics of methionine uptake by early blastocysts in Na+-depleted media indicate a competitive type of inhibition. The uptake of methionine by early blastocysts is relatively resistant to ouabain and unaffected by K+-free medium. In contrast, methionine uptake by late morula-stage embryos is markedly inhibited by ouabain and K+-free medium in 1 hr. These results suggest that 1) Na+ serves to increase the affinity of methionine for the carrier in early blastocysts, 2) the cation gradients do not supply a major fraction of the energy required for methionine transport, and/or the gradients are difficult to perturb once the blastocyst has formed, and 3) putative Na+ pumps may be localized on the blastocoelic surface of the blastocysts.  相似文献   

2.
Insensitivity of midgut epithelium to ouabain was studied in three phytophyagous Lepidoptera: the tobacco hornworm. Manduca sexta, the Cecropia silkmoth. Hyalophora cecropia, and the Monarch butterfly, Danaus plexippus. The midgut failed to selectively bind ouabain in the presence of 8 mM K?. The presence of K+ stimulated ouabain sensitive Na+K+-ATPases in midgut could not be confirmed. Neuronal tissues collected from the same species at the same stages in development bound ouabain readily, and possessed K+ stimulated ouabain sensitive Na+K+-ATPases. It is proposed that alkali metal transport across the midgut epithelium of these phytophagous Lepidoptera occurs via energy-linked processes not requiring Na+K+-ATPases.  相似文献   

3.
Endogenous phospholipids of a purified (NaK)-ATPase were displaced by exogenous phosphatidyl choline. If vesicles were made from phosphatidyl choline and enzyme containing only phosphatidyl choline, coupled Na+K+ transport could be demonstrated. This transport was inhibitable by ouabain. Therefore, the number of components necessary for Na+K+ transport has been reduced to the purified (NaK)-ATPase and one phospholipid.  相似文献   

4.
The presence of a Na+K+-activated, Mg2+-dependent ATPase (E.C. 3.6.1.3) has been demonstrated in microsomal preparations from the Malpighian tubules of Locusta. The effects of sodium and potassium ions, and different concentrations of ouabain, have been studied in relation to the activity of this enzyme and the ability of in vitro Malpighian tubule preparations to secrete fluid. From these studies it seems highly likely that a Na+K+ activated ATPase ‘pump’ is involved in fluid transport across the walls of the tubules.  相似文献   

5.
The dependence of blastocyst development on the extracellular Na+/K+ ratio was investigated in an in vitro system. Hatching and outgrowth of mouse blastocysts was enhanced at Na+/K+ ratios between 3 and 10 compared to the ratio of about 25 typical for most culture media and serum. At a Na+/K+ ratio of 2, blastocyst hatching and outgrowth were inhibited. The requirement of blastocyst development for relatively high extracellular K+ concentrations agrees with the fact that K+ concentrations in oviduct and uterine secretions are higher than in serum. The findings can also be relevant in optimizing in vitro culturing techniques for blastocysts.  相似文献   

6.
The effect of various potassium concentrations (ranging from 1.4 mM to 30 mM K+) in modified Tyrode's medium on the culture of mouse zygotes obtained after in vitro fertilization to the blastocyst stage was examined. A clear dose-dependent negative effect of increasing K+ concentrations on the preimplantation embryonic development in vitro was found. We have previously shown that significantly more two-cell embryos reach the blastocyst stage when cultured during the second day postinsemination in medium supplemented with taurine. Because taurine, an amino acid that abounds in the reproductive tract, has been reported to inhibit the enzyme Na+-K+-adenosine triphosphatase (Na+-K+-AT-Pase), we used two other conditions known to inhibit the Na+-K+-ATPase to study their effect on mouse embryo development. Culturing embryos during a short period (the second day postinsemination) in low extracellular K+ concentrations (1.4 mM) or in medium supplemented with ouabain (50 μM) showed positive effects similar to those of culturing in medium with taurine (10 mM). This beneficial effect of ouabain was found in various K+ concentrations tested, including the high concentrations present in the oviduct. Although the effects of low K+ and taurine can possibly be ascribed to their other cellular effects, the effect of ouabain shows that inhibition of the Na+-K+-ATPase during the two-cell stage in the mouse is beneficial for further embryonic development to the blastocyst stage. © 1993 Wiley-Liss, Inc.  相似文献   

7.
In vitro preparations of Locusta Malpighian tubules are able to transport K+ against its concentration gradient. The ‘urine’ is slightly hyper-osmotic with respect to the bathing solution and the rate of secretion is inversely dependent on the osmotic pressure of the latter. The rate of fluid secretion increases with increasing temperature; being maximal at approx 40°C. The ionic composition of the secreted fluid, as indicated by Na+/K+ ratios, is altered by the presence of 1 mM ouabain in the bathing solution. Fluid secretion is inhibited by 1 mM ouabain. In addition, oxygen consumption by the Malpighian tubules is inhibited by either the presence of 1 mM ouabain or the absence of K+ in the bathing solution. The relationship between respiration, active transport and the Na+K+-activated ATPase is discussed.  相似文献   

8.
Eukaryotic plasma membranes (PMs) are energized by electrogenic P-type ATPases that generate either Na+ or H+ motive forces to drive Na+ and H+ dependent transport processes, respectively. For this purpose, animal rely on Na+/K+-ATPases whereas fungi and plants employ PM H+-ATPases. Prokaryotes, on the other hand, depend on H+ or Na+-motive electron transport complexes to energize their cell membranes. This raises the question as to why and when electrogenic Na+ and H+ pumps evolved? Here it is shown that prokaryotic Na+/K+-ATPases have near perfect conservation of binding sites involved in coordination of three Na+ and two K+ ions. Such pumps are rare in Eubacteria but are common in methanogenic Archaea where they often are found together with P-type putative PM H+-ATPases. With some exceptions, Na+/K+-ATPases and PM H+-ATPases are found everywhere in the eukaryotic tree of life, but never together in animals, fungi and land plants. It is hypothesized that Na+/K+-ATPases and PM H+-ATPases evolved in methanogenic Archaea to support the bioenergetics of these ancestral organisms, which can utilize both H+ and Na+ as energy currencies. Both pumps must have been simultaneously present in the first eukaryotic cell, but during diversification of the major eukaryotic kingdoms, and at the time animals diverged from fungi, animals kept Na+/K+-ATPases but lost PM H+-ATPases. At the same evolutionary branch point, fungi did loose Na+/K+-ATPases, and their role was taken over by PM H+-ATPases. An independent but similar scenery emerged during terrestrialization of plants: they lost Na+/K+-ATPases but kept PM H+-ATPases.  相似文献   

9.
C J Duncan 《Life sciences》1975,16(6):955-965
A Mg2+Na+K+ATPase was found in a ghost preparation from rabbit erythrocytes, a finding in conflict with previous reports, but in agreement with the known kinetics of cation movements in these cells. However the Mg2+Na+K+ATPase was not inhibited by 10−4M ouabain, nor by 10−4M Ca2+. The physiological status of this enzyme is discussed. The basic Mg2+-ATPase activity in this preparation is also stimulated by HCO3; it is suggested that the HCO3-stimulated ATPases reported in a variety of other preparations are not necessarily due to mitochondrial contamination but could well originate from the plasma membrane.  相似文献   

10.
We have investigated the presence of K+-transporting ATPases that belong to the phylogenetic group of animal Na+,K+-ATPases in the Pythium aphanidermatum Stramenopile oomycete, the Porphyra yezoensis red alga, and the Udotea petiolata green alga, by molecular cloning and expression in heterologous systems. PCR amplification and search in EST databases allowed one gene to be identified in each species that could encode ATPases of this type. Phylogenetic analysis of the sequences of these ATPases revealed that they cluster with ATPases of animal origin, and that the algal ATPases are closer to animal ATPases than the oomycete ATPase is. The P. yezoensis and P. aphanidermatum ATPases were functionally expressed in Saccharomyces cerevisiae and Escherichia coli alkali cation transport mutants. The aforementioned cloning and complementary searches in silicio for H+- and Na+,K+-ATPases revealed a great diversity of strategies for plasma membrane energization in eukaryotic cells different from typical animal, plant, and fungal cells.  相似文献   

11.
12.
P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca2+, Na+, K+ and H+), have been reported. They include reticulum and plasma-membrane Ca2+-ATPases, Na+/K+-ATPase and H+/K+-ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg2+ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na+/K+-ATPase α1-isoform, H+/K+-ATPase α2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H+/K+-ATPase α2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.  相似文献   

13.
Effects of long-term, subtotal inhibition of Na+-K+ transport, either by growth of cells in sublethal concentrations of ouabain or in low-K+ medium, are described for HeLa cells. After prolonged growth in 2 × 10?8 M ouabain, the total number of ouabain molecules bound per cell increases by as much as a factor of three, mostly due to internalization of the drug. There is only about a 20% increase in ouabain-binding sites on the plasma membrane, representing amodest induction of Na+, K+-ATPase. In contrast, after long-term growth in low K+ there can be a twofold or greater increase in ouabain binding per cell, and in this case the additional sites are located in the plasma membrane. The increase is reversible. To assess the corresponding transport changes, we have separately estimated the contributions of increased intracellular [Na+] and of transport capacity (number of transport sites) to transport regulation. During both induction and reversal, short-term regulation is achieved primarily by changes in [Na+]i. More slowly, long-term regulation is achieved by changes in the number of functional transporters in the plasma membrane as assessed by ouabain binding, Vmax for transport, and specific phosphorylation. Parallel exposure of cryptic Na+, K+-ATPase activity with sodium dodecyl sulfate in the plasma membranes of both induced and control cells showed that the induction cannot be accounted for by an exposure of preexisting Na+, K+-ATPase in the plasma membrane. Analysis of the kinetics of reversal indicates that it may be due to a post-translational event.  相似文献   

14.
The membrane potential of the Ehrlich ascites tumor cell was shown to be influenced by its amino acid content and the activity of the Na+: K+ pump. The membrane potential (monitored by the fluorescent dye, 3,3′-dipropylthiodicarbocyanine iodide) varied with the size of the endogenous amino acid pool and with the concentration of accumulated 2-aminoisobutyrate. When cellular amino acid content was high, the cells were hyperpolarized; as the pool declined in size, the cells were depolarized. The hyperpolarization seen with cellular amino acid required cellular Na+ but not cellular ATP. Na+ efflux was more rapid from cells containing 2-aminoisobutyrate than from cells low in internal amino acids. These observations indicate that the hyperpolarization recorded in cells with high cellular amino acid content resulted from the electrogenic co-efflux of Na+ and amino acids.Cellular ATP levels were found to decline rapidly in the presence of the dye and hence the influence of the pump was seen only if glucose was added to the cells. When the cells contained normal Na+ (approx. 30 mM), the Na+: K+ pump was shown to have little effect on the membrane potential (the addition of ouabain had little effect on the potential). When cellular Na+ was raised to 60 mM, the activity of the pump changed the membrane potential from the range ?25 to ?30 mV to ?44 to ?63 mV. This hyperpolarization required external K+ and was inhibited by ouabain.  相似文献   

15.
Liposomes containing either purified or microsomal (Na+,K+)-ATPase preparations from lamb kidney medulla catalyzed ATP-dependent transport of Na+ and K+ with a ratio of approximately 3Na+ to 2K+, which was inhibited by ouabain. Similar results were obtained with liposomes containing a partially purified (Na+,K+-ATPase from cardiac muscle. This contrasts with an earlier report by Goldin and Tong (J. Biol. Chem. 249, 5907–5915, 1974), in which liposomes containing purified dog kidney (Na+,K+)-ATPase did not transport K+ but catalyzed ATP-dependent symport of Na+ and Cl?. When purified by our procedure, dog kidney (Na+,K+)-ATPase showed some ability to transport K+ but the ratio of Na+ : K+ was 5 : 1.  相似文献   

16.
Amino acid transport is facilitated by specific transporters within the plasma membrane of the cell. Mediated Na+-independent transport of L-glutamate can be easily detected in mouse oocytes, but it is nearly undetectable in blastocyst-stage embryos. In contrast, the Na+-dependent transport of L-aspartate is not detectable in oocytes, but it is detectable in eight-cell embryos and reaches relatively high levels by the blastocyst stage. It is believed that the amino acid transporters responsible are systems x?c and X?AG, respectively. Here we report the detection of Na+-dependent L-aspartate transport, which increased as pig blastocysts developed, although Na+-dependent aspartate transport was not detected in pig oocytes. Mediated Na+-independent L-glutamate transport was not detected in pig oocytes, in contrast to the mouse, nor in early or hatched pig blastocysts. Thus, while the developmental regulation of system X?AG is similar in both the pig and the mouse, system x?c was not detectable in pig oocytes or blastocysts. Elucidation of the molecular mechanisms controlling amino acid transport and other gene expression in early embryos should contribute to an understanding of whether and even why some aspects of developmental regulation of gene expression may need to differ among species. © 1993 Wiley-Liss, Inc.  相似文献   

17.
Neuronal tissues from Manduca sexta, the tobacco hornworm, Hyalophora cecropia, the silkmoth and Danaus plexippus, the Monarch Butterfly, contain Na+K+-ATPase which is sensitive to cardiac glycoside (ouabain). The Km for K+ stimulation of Na+K+-ATPase in M. sexta and D. plexippus is 2.2 mM and for Na+ stimulation in D. plexippus, 6.0 mM. In vitro ouabain concentrations of 1.0 × 10?5 M and 5.0 × 10?5 M in the presence of 7.5 mM K+ inhibited Na+K+-ATPase activity in H. cecropia and M. sexta by 50% respectively. Na+K+-ATPase from D. plexippus was approximately 300 times less sensitive. High concentrations (10?3 M in haemolymph) of ouabain had no effect on M. sexta in vivo. This is largely explained by haemolymph K+ (>; 30 mM) antagonizing the binding of ouabain to Na+K+-ATPase. As demonstrated in vitro, 30 mM K+ totally protects Na+K+-ATPase from inhibition by 7.5 × 10?3 M ouabain in D. plexippus and protects the enzyme by 65% in M. sexta. At least part of the physiological burden incurred in utilization of cardiac glycoside ingestion and storage for protection from predation, however, is probably related to the toxic effects of cardiac glycosides on neuronal Na+K+-ATPase.  相似文献   

18.
The uptake of l-methionine-methyl-3H and l-leucine-3H from completely defined medium into acid-soluble fractions of preimplantation mouse embryos has been studied. Late four-cell embryos and early blastocysts raised in vitro can concentrate both amino acids by processes which exhibit saturable, Michaelis-Menten type kinetics, characteristic of carrier-mediated active transport systems. This uptake is temperature-sensitive and inhibited by certain amino acids which compete for the same uptake sites. Methionine uptake seems to be mediated by a single transport system (Km = 6.25 × 10?5M) at the four-cell stage. Complex kinetics suggest that two distinct transport systems exist at the early blastocyst stage (Km = 6.25 × 10?5M; 8.9 × 10?4M). Vmax values (mg/embryo/15 min) for methionine and leucine transport increase significantly from the late four-cell stage to the blastocyst stage, suggesting that additional carriers are produced or activated during development.Most importantly, leucine and methionine transport is Na+-independent at the four-cell stage, methionine transport is partially dependent at the morula stage, and both amino acids are completely Na+-dependent at the blastocyst stage. The cumulative results suggest that preimplantation embryos accumulate leucine and methionine by specific, chemically mediated, active transport systems. The qualitative and quantitative developmental changes in cell membrane function may represent preparatory steps for subsequent growth of embryonic and/or trophoblastic cells.  相似文献   

19.
On crude membrane fractions of skeletal musccle, vanadyl (IV) and vanadate (V) compounds inhibited the membrane (Na+K+)-ATPase and neutral (K+-)p-nitrophenylphosphatase equally with Ki 4×10?8 mol.1?1. Only vanadate (V) inhibited significantly the muscle (Na+K+)ATPase with Ki 1×10?6 mol.1?1, whereas vanadyl (IV) ions were almost without effect. Extracellular application of both forms of vanadium failed to inhibit the electrogenic (Na+K+) pump in intact mouse diaphragm fibres.  相似文献   

20.
Amino acid transport is facilitated by specific transporters within the plasma membrane of the cell. In mouse oocytes and cleavage-stage conceptus Na+-dependent L-alanine and L-leucine transport are nearly undetectable. Sodium-dependent transport via system BO,+ in the mouse conceptus increases greatly between the 8-cell and blastocyst stages. By contrast, data presented here for the pig show that L-alanine and L-leucine transport is mainly Na+-dependent in the oocyte; this Na+-dependent component of transport becomes undetectable by the blastocyst stage. The Na+-dependent component of transport in oocytes is inhibited by BCH (2-aminoendo-bicyclo[2.2.1] hexane-2-carboxylic acid) and L-lysine and thus could be a form of system BO,+. In both oocytes and blastocysts Na+-independent L-leucine transport is inhibited by BCH, which is consistent with the presence of system L. The dramatic decrease in Na+-dependent amino acid transport activity could occur in pig conceptuses in association with the onset of RNA synthesis during the 4-cell stage. Regardless of the precise time during development at which it occurs, however, this dramatic, developmentally regulated decrease in Na+-dependent alanine and leucine transport activity contrasts sharply with the large increase in Na+-dependent system BO,+ activity that occurs during preimplantation development of murine conceptuses. Elucidation of the molecular mechanisms by which these changes occur should contribute to an understanding of regulation of gene expression during early development. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号