首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD28 and CTLA-4 are homologous cell surface proteins expressed by T cells. CD28 is constitutively expressed by most T cells, whereas CTLA-4 is expressed by activated T cells. Both proteins are ligands for the costimulatory molecules CD80 and CD86 expressed by activated B cells, macrophages, and dendritic cells. A fusion protein comprising the CTLA-4 extracellular domain joined to a human immunoglobulin heavy chain constant region (CTLA4Ig) binds CD80 and CD-86 with high affinity and inhibits CD80/CD86-dependent immune responses in vitro and in vivo. Attempts at producing the CTLA-4 extracellular domain as an unfused protein have met with limited success. Here we describe the expression and purification of the CTLA-4 extracellular domain as a nonfused protein in Escherichia coli. The 12.5-kDa CTLA-4 extracellular domain was insoluble when expressed in E. coli and required denaturation, reduction, and refolding steps to become soluble and assume its proper conformation. The protein refolded into a mixture of monomers, disulfide-linked dimers, and higher order disulfide-linked aggregates. sCTLA-4 dimers were the predominant refold form when air was used as the oxidizing agent during the refold procedure. Purified sCTLA-4 dimers were 10- to 50-fold more potent than sCTLA-4 monomers at inhibiting T cell activation using a CD80-dependent in vitro bioassay.  相似文献   

2.
Introduction and expression of foreign genes in bacteria often results accumulation of the foreign protein(s) in inclusion bodies (IBs). The subsequent processes of refolding are slow, difficult and often fail to yield significant amounts of folded protein. RHG1 encoded by rhg1 was a soybean (Glycine max L. Merr.) transmembrane receptor-like kinase (EC 2.7.11.1) with an extracellular leucine-rich repeat domain. The LRR of RHG1 was believed to be involved in elicitor recognition and interaction with other plant proteins. The aim, here, was to express the LRR domain in Escherichia coli (RHG1-LRR) and produce refolded protein. Urea titration experiments showed that the IBs formed in E. coli by the extracellular domain of the RHG1 protein could be solubilized at different urea concentrations. The RHG1 proteins were eluted with 1.0-7.0M urea in 0.5M increments. Purified RHG1 protein obtained from the 1.5 and 7.0M elutions was analyzed for secondary structure through circular dichroism (CD) spectroscopy. Considerable secondary structure could be seen in the former, whereas the latter yielded CD curves characteristic of denatured proteins. Both elutions were subjected to refolding by slowly removing urea in the presence of arginine and reduced/oxidized glutathione. Detectable amounts of refolded protein could not be recovered from the 7.0M urea sample, whereas refolding from the 1.5M urea sample yielded 0.2mg/ml protein. The 7.0M treatment resulted in the formation of a homogenous denatured state with no apparent secondary structure. Refolding from this fully denatured state may confer kinetic and/or thermodynamic constraints on the refolding process, whereas the kinetic and/or thermodynamic barriers to attain the folded conformation appeared to be lesser, when refolding from a partially folded state.  相似文献   

3.
Understanding the biological activity of bacteriophage particles is essential for rational design of bacteriophages with defined pharmacokinetic parameters and to identify the mechanisms of immunobiological activities demonstrated for some bacteriophages. This work requires highly purified preparations of the individual phage structural proteins, possessing native conformation that is essential for their reactivity, and free of incompatible biologically active substances such as bacterial lipopolysaccharide (LPS). In this study we describe expression in E. coli and purification of four proteins forming the surface of the bacteriophage T4 head: gp23, gp24, gphoc and gpsoc. We optimized protein expression using a set of chaperones for effective production of soluble proteins in their native conformations. The assistance of chaperones was critical for production of soluble gp23 (chaperone gp31 of T4 phage) and of gpsoc (chaperone TF of E. coli). Phage head proteins were purified in native conditions by affinity chromatography and size-exclusion chromatography. Two-step LPS removal allowed immunological purity grade with the average endotoxin activity less than 1 unit per ml of protein preparation. The secondary structure and stability of the proteins were studied using circular dichroism (CD) spectrometry, which confirmed that highly purified proteins preserve their native conformations. In increasing concentration of a denaturant (guanidine hydrochloride), protein stability was proved to increase as follows: gpsoc, gp23, gphoc. The denaturation profile of gp24 protein showed independent domain unfolding with the most stable larger domain. The native purified recombinant phage proteins obtained in this work were shown to be suitable for immunological experiments in vivo and in vitro.  相似文献   

4.
A Tomschy  C Fauser  R Landwehr    J Engel 《The EMBO journal》1996,15(14):3507-3514
Cluster formation of E-cadherin on the cell surface is believed to be of major importance for cell-cell adhesion. To mimic this process the extracellular part of mouse E-cadherin (ECAD) was recombinantly fused to the assembly domain of rat cartilage oligomeric matrix protein (COMP), resulting in the chimeric protein ECAD-COMP. The COMP domain formed a five-stranded alpha-helical coiled-coil. This enabled the formation of a pentameric ECAD with bundled C-termini and free N-termini. The pentameric protein construct ECAD-COMP and the monomeric ECAD were expressed in human embryonal kidney 293 cells. Electron microscopy, analytical ultracentrifugation, solid phase binding and cell attachment assays revealed that pentamers showed strong self-association and cell attachment, whereas monomers exhibited no activity. At the high internal concentration in the pentamer the N-terminal EC1 domains of two E-cadherin arms interact to form a ring-like structure. Then the paired domains interact with a corresponding pair from another pentamer. None of the four other extracellular domains of E-cadherin is involved in this interaction. Based on these results, an in vivo mechanism is proposed whereby two N-terminal domains of neighbouring E-cadherins at the cell surface first form a pair, which binds with high affinity to a similar complex on another cell. The strong dependence of homophilic interactions on C-terminal clustering points towards a regulation of E-cadherin mediated cell-cell adhesion via lateral association.  相似文献   

5.
Eppin has two potential protease inhibitory domains: a whey acid protein or four disulfide core domain and a Kunitz domain. The protein is also reported to have antibacterial activity against Gram-negative bacteria. Eppin and its whey acid protein and Kunitz domains were expressed in Escherichia coli and their ability to inhibit proteases and kill bacteria compared. The Kunitz domain inhibits elastase (EC 3.4.21.37) to a similar extent as intact eppin, whereas the whey acid protein domain has no such activity. None of these fragments inhibits trypsin (EC 3.4.21.4) or chymotrypsin (EC 3.4.21.1) at the concentrations tested. In a colony forming unit assay, both domains have some antibacterial activity against E. coli, but this was not to the same degree as intact eppin or the two domains together. When bacterial respiratory electron transport was measured using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay, eppin and its domains caused an increase in the rate of respiration. This suggests that the mechanism of cell killing may be partly through the permeablization of the bacterial inner membrane, resulting in uncoupling of respiratory electron transport and consequent collapse of the proton motive force. Thus, we conclude that although both of eppin's domains are involved in the protein's antibacterial activity, only the Kunitz domain is required for selective protease inhibition.  相似文献   

6.
Protein-protein interactions between MBS and PKG are mediated by the involvement of C-terminal domain of MBS, MBS(CT180) and N-terminal coiled coil (CC) leucine zipper (LZ) domain of PKG-Iα, PKG-Iα1(-59). MBS(CT180) is comprised of three structurally variant domains of non-CC, CC, and LZ nature. Paucity of three-dimensional structural information of these MBS domains precludes atomic level understanding of MBS-PKG contractile complex structure. Here we present data on cloning, expression, and purification of CC, LZ, and CCLZ domains of MBS(CT180) and their biophysical characterization using size exclusion chromatography (SEC), circular dichroism (CD), and two-dimensional (1)H-(15)N HSQC NMR. The methods as detailed resulted in high level protein expression and high milligram quantities of purified isotopically ((15)N and (13)C) enriched polypeptides. SEC, CD, and (1)H-(15)N HSQC NMR experiments demonstrated that recombinantly expressed MBS CC domain is well folded and exists as a dimer within physiologic pH range, which is supported by our previous findings. The dimerization of CC MBS is likely mediated through formation of coiled coil conformation. In contrast, MBS LZ domain was almost unfolded that exists as non-stable low structured monomer within physiologic pH range. Protein folding and stability of MBS LZ was improved as a function of decrease in pH that adopts a folded, stable, and structured conformation at acidified pH 4.5. SEC and NMR analyses of LZ vs. CCLZ MBS domains indicated that inclusion of CC domain partially improves protein folding of LZ domain.  相似文献   

7.
Zhou F  Su J  Fu L  Yang Y  Zhang L  Wang L  Zhao H  Zhang D  Li Z  Zha X 《Glycoconjugate journal》2008,25(8):727-740
The human E-cadherin is a single transmembrane domain protein involved in Ca2+-dependent cell–cell adhesion. In a previous study, we demonstrated that all of four potential N-glycosylation sites in E-cadherin are occupied by N-glycans in human breast carcinoma cells in vivo and the elimination of N-glycan at Asn-633 dramatically affected E-cadherin expression and made it degraded. In this study we investigated the molecular mechanism of E-cadherin, which lacks N-glycosylation at Asn-633 (M4), degradation and the role of the N-glycan at Asn-633 in E-cadherin folding. We treated cells stably expressed M4 E-cadherin with MG123, DMM, respectively. Either MG132 or DMM could efficiently block degradation of M4 E-cadherin. M4 E-cadherin was recognized as the substrate of ERAD and was retro-translocated from ER lumen to cytoplasm by p97. It was observed that the ration of M4 E-cadherin binding to calnexin was significantly increased compared with that of other variants, suggesting that it was a misfolded protein, though cytoplasmic domain of M4 E-cadherin could associate with β-catenin. Furthermore, we found that N-glycans of M4 E-cadherin were modified in immature high mannose type, suggesting that it could not depart to Golgi apparatus. In conclusion, this study revealed that N-glycosylation at Asn-633 is essential for E-cadherin expression, folding and trafficking.  相似文献   

8.
We have cloned, over expressed, and purified one of the two catalytic domains (residues Ala361 to Gly468, ACE-N) of human somatic angiotensin-I converting enzyme in Escherichia coli. This construct represents the N-catalytic domain including the two binding motifs and the 23 amino acid spacers as well as some amino acid residues before and after the motifs that might help in correct conformation. The overexpressed protein was exclusively localized to insoluble inclusion bodies. Inclusion bodies were solubilized in an 8-M urea buffer. Purification was carried out by differential centrifugation and gel filtration chromatography under denaturing conditions. About 12 mg of ACE-N peptide per liter of bacterial culture was obtained. The integrity of recombinant protein domain was confirmed by ESI/MS. Structural analysis using CD spectroscopy has shown that, in the presence of TFE, the ACE-N protein fragment has taken a conformation, which is consistent with the one found in testis ACE by X-ray crystallography. This purification procedure enables the production of an isotopically labeled protein fragment for structural studying in solution by NMR spectroscopy.  相似文献   

9.
In leukocytes such as thymocytes and basophilic leukemia cells, a glycosilated integral membrane protein called CD43 (leukosialin or sialophorin), which is defective in patients with Wiskott-Aldrich syndrome, was highly concentrated in the cleavage furrow during cytokinesis. Not only at the mitotic phase but also at interphase, CD43 was precisely colocalized with ezrin-radixin-moesin family members. (ERM), which were previously reported to play an important role in the plasma membrane-actin filament association in general. At the electron microscopic level, throughout the cell cycle, both CD43 and ERM were tightly associated with microvilli, providing membrane attachment sites for actin filaments. We constructed a cDNA encoding a chimeric molecule consisting of the extracellular domain of mouse E-cadherin and the transmembrane/cytoplasmic domain of rat CD43, and introduced it into mouse L fibroblasts lacking both endogenous CD43 and E-cadherin. In dividing transfectants, the chimeric molecules were concentrated in the cleavage furrow together with ERM, and both proteins were precisely colocalized throughout the cell cycle. Furthermore, using this transfection system, we narrowed down the domain responsible for the CD43-concentration in the cleavage furrow. Based on these findings, we conclude that CD43 is concentrated in the cleavage furrow through the direct or indirect interaction of its cytoplasmic domain with ERM and actin filaments.  相似文献   

10.
11.
Cobrotoxin (CBTX) is a highly toxic short neurotoxin, isolated from the Taiwan cobra (Naja naja atra) venom. In the present study for the first time we report the cloning and expression of CBTX in high yields (12mg/L) in Escherichia coli. CBTX fused to the IgG-binding domain of protein A (IgG-CBTX) was expressed in the soluble form. The misfolded CBTX portion (of the overexpressed fusion protein) was refolded under optimal redox conditions. The fusion protein (IgG-CBTX) was observed to undergo auto-catalytic cleavage to yield CBTX with additional 5 amino acids upstream of its N-terminal end. The far UV and near UV circular dichroism spectra of the recombinant CBTX were identical to those of the toxin isolated from the crude venom source. Recombinant CBTX was isotope labeled (15N and 13C) and all the resonances ('H, 13C, and 15N) in the protein have been unambiguously assigned. ' H '5N HSQC spectrum of recombinant CBTX revealed that the protein is in a biologically active conformation. 1H-15Nchemical shift perturbation data showed that recombinant CBTX binds to a peptide derived from the alpha7 subunit of the Torpedo acetylcholine receptor (AchR) with high affinity. The AchR peptide is found to bind to residues located at the tip of Loop-2 in CBTX. The results of the present study provide an avenue to understand the structural basis for the high toxicity exhibited by CBTX. In addition, complete resonance assignments in CBTX (reported in this study) are expected to trigger intensive research towards the design of new pharmacological agents against certain neural disorders.  相似文献   

12.
A limited number of proteins of Mycobacterium tuberculosis have been characterized so far for their use as potential candidates for diagnosis and vaccine studies. This study was aimed at cloning, expression, and purification of a 27 kDa protein (otherwise known as the MPT51 or Rv3803c protein) of M. tuberculosis. The Rv3803c gene was PCR amplified using primers that contain specific restriction sites. The amplified product was inserted initially into pTOPO and then sub-cloned into pET15b and pET24d vectors, such that the recombinant protein is predicted to contain an N-terminal or a C-terminal histidine tag, respectively. The recombinant plasmids were introduced into Escherichia coli BL21 (DE3) and the recombinant proteins were purified from the cytosolic fractions of the E. coli sonicates by nickel-NTA chromatography. The purity, molecular mass, and the conformation of the proteins were determined by high performance liquid chromatography (HPLC), matrix assisted laser desorption-ionization-time-of-flight (MALDI-TOF), and circular dichroism (CD) studies, respectively. The purified proteins were found to be immunogenic and useful for immunodiagnostic studies of tuberculosis by enzyme linked immunosorbent assay (ELISA), with a sensitivity of 71% and specificity of 95%.  相似文献   

13.
HSPC144 is a newly identified gene in human CD34(+) hematopoietic stem/progenitor cells. In this work, we have expressed and purified the 225-residue protein from Escherichia coli BL21 (DE3) and identified a stable fragment HSPC144-P (residues 44-225) by limited proteolysis method. The HSPC144-P fragment exhibits high stability with a little increase of secondary structure percentage as compared with the full-length protein. We anticipated that the N-terminally truncated protein possesses a more compact structure. By sequence analysis, the proteolytic fragment shares a great similarity with DUF589 domain, a previously identified domain with unknown function. This novel domain is highly conserved in Thy28 proteins and is worthy of structural and functional studies. We have subcloned this homologous domain from HSPC144 protein and purified to homogeneity for structure analysis. The (15)N and (15)N/(13)C-labeled DUF589 domain samples have been prepared successfully and determination of the NMR structure is in progress.  相似文献   

14.
Expression of high quantities of alfalfa hydroperoxide lyase in Escherichia coli made it possible to study its active site and structure in more detail. Circular dichroism (CD) spectra showed that hydroperoxide lyase consists for about 75% of alpha-helices. Electron paramagnetic resonance (EPR) spectra confirmed its classification as a cytochrome P450 enzyme. The positive influence of detergents on the enzyme activity is paralleled by a spin state transition of the heme Fe(III) from low to high spin. EPR and CD spectra showed that detergents induce a subtle conformational change, which might result in improved substrate binding. Because hydroperoxide lyase is thought to be a membrane bound protein and detergents mimic a membrane environment, the more active, high spin form likely represents the in vivo conformation. Furthermore, the spin state appeared to be temperature-dependent, with the low spin state favored at low temperature. Point mutants of the highly conserved cysteine in domain D indicated that this residue might be involved in heme binding.  相似文献   

15.
We have identified a mutation of human gamma-interferon (IFN gamma) causing a temperature-sensitive phenotype. We used a randomized oligonucleotide to mutagenize a synthetic human IFN gamma gene, then screened the resulting mutants produced in Escherichia coli for proteins with altered biological activity. One mutant protein selected for detailed characterization exhibited less than 0.3% of the specific biological activity of native IFN gamma in an antiviral activity assay performed at 37 degrees C. However, the protein bound the human IFN gamma receptor with native efficiency at 4 degrees C. Sequencing the plasmid DNA encoding this protein showed that the mutation changed the lysine residue at amino acid 43 to glutamic acid (IFN gamma/K43E). Site-specific mutagenesis at amino acid 43 showed that this protein's phenotype resulted from positioning a negative charge at position 43. Structural characterization of IFN gamma/K43E using CD demonstrated that the protein had native conformation at 25 degrees C, but assumed an altered conformation at 37 degrees C. IFN gamma/K43E in this altered conformation bound poorly to the IFN gamma receptor at 37 degrees C, providing a rationale for the mutant's decreased antiviral activity.  相似文献   

16.
gp17, a secretory CD4-binding factor isolated from the human seminal plasma, is identical to the gross cystic disease fluid protein-15, a specific marker for primary and metastatic breast tumors. We previously demonstrated that gp17 binds to CD4 with high affinity and strongly inhibits T lymphocyte apoptosis induced by sequential cross-linking of CD4 and T cell receptor (TCR). To further characterize the gp17/CD4 interaction and map the gp17 binding site, we produced a secreted form of recombinant gp17 fused to human IgG1 Fc, gp17-Ig. We showed that gp17-Ig exhibits a binding affinity for CD4 similar to that of native gp17. As no information about gp17 structure is presently available, 99 overlapping gp17 peptides were synthesized by the Spot method, which allowed the mapping of two CD4 binding regions. Alanine scanning of CD4-reactive peptides identified critical residues, selected for site-directed mutagenesis. Nine gp17-Ig mutants were generated and characterized. Three residues within the carboxy-terminal region were identified as the major binding domain to CD4. The Spot method combined with mutagenesis represents a refined approach to distinguish the contact residues from the ones contributing to the conformation of the CD4-binding domain.  相似文献   

17.
The classical cadherins, definitive proteins of the cadherin superfamily, are characterized functionally by their ability to mediate calcium-dependent cell aggregation in vitro. To test hypothetical mechanisms of adhesion, we have constructed two mutants of the chicken E-cadherin protein, one with the highly conserved His-Ala-Val (HAV) sequence motif reversed to Val-Ala-His (VAH), the other lacking the first extracellular domain (EC1). The inversion of HAV to VAH has no effect on the capacity of E-cadherin to mediate adhesion. Deletion of EC1 completely eliminates the ability of E-cadherin to mediate homophilic adhesion, but the deletion mutant is capable of adhering heterophilically to both unmutated E-cadherin and to the HAV/VAH mutant. These results demonstrate that the conserved HAV sequence motif is not involved in cadherin-mediated adhesion as has been suggested previously and supports the idea that in the context of the cell surface, cadherin-mediated cell-cell adhesion involves an interaction of EC1 with other domains of the cadherin extracellular moiety and not the "linear zipper" model, which posits trans interactions only between EC1 on apposing cell surfaces.  相似文献   

18.
Ligand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120. Ab initio modeling of these data showed that both Salp15 and gp120 bind to the D1 domain of sCD4 and yet induce drastically different structural rearrangements. Upon binding, Salp15 primarily distorts the characteristic lobal architecture of the sCD4 without significantly altering the semi-extended shape of the sCD4 receptor. In sharp contrast, the interaction of gp120 with sCD4 induces a shape change within sCD4 that can be described as a Z-to-U bi-fold closure of the four domains across its flexible D2-D3 linker. Placement of known crystal structures within the boundaries of the SAXS-derived models suggests that the ligand-induced shape changes could be a result of conformational changes within this D2-D3 linker. Functionally, the observed shape changes in CD4 receptor causes dissociation of lymphocyte kinase from the cytoplasmic domain of Salp15-bound CD4 and facilitates an interaction between the exposed V3 loops of CD4-bound gp120 molecule to the extracellular loops of its co-receptor, a step essential for HIV-1 viral entry.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) protein U (VpU) is an accessory protein responsible for enhancement of viral particle release and down regulation of the T-lymphocyte coreceptor CD4. Direct binding between the cytoplasmic domains of CD4 and VpU as well as phosphorylation of serines 53 and 57 in the cytoplasmic domain of VpU plays a central role in CD4 downregulation. We investigated structural consequences of phosphorylation of the two serines using nuclear magnetic resonance spectroscopy. A uniformly 15N and 13C stable isotope-labeled 45-residue peptide comprising the cytoplasmic domain of VpU (VpUcyt) was recombinantly produced in E .coli. The peptide forms two helices (commonly referred to as helix 2 and 3) in the presence of membrane mimicking dodecylphosphocholine (DPC) micelles, which flank a flexible region containing the two phosphorylation sites. Phosphorylation does not cause any drastic structural changes in the secondary structure of VpUcyt. However, an N-terminal elongation of helix 3 and a slightly reduced helicity at the C-terminus of helix 2 are observed upon phosphorylation based on characteristic changes of 13Calpha and 13Cbeta chemical shifts. Phosphorylation also reduces the local mobility of the protein backbone in the loop region containing the phosphorylation sites according to heteronuclear 1H--15N nuclear Overhauser enhancement (NOE) data.  相似文献   

20.
The bldB gene from Streptomyces lividans was cloned, and its product was overexpressed in Escherichia coli using a T7 expression system. Gel mobility shift assays showed that the BldB protein was functionally expressed in the E. coli system and may negatively regulate its own expression. The comparative analyses by mass spectrometry, Tris-Tricine sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and analytical ultracentrifuge established that BldB is a dimeric protein with 24 kDa molecular mass, of which monomers do not covalently interact with each other. Gel filtration result implied that the protein shape would not be globular. More detailed structural investigations by CD and NMR spectroscopy confirmed that the majority of the BldB structure is not only disordered but also highly flexible. The highly reversible, but hardly cooperative, property of the thermal denaturation also supported the idea that the protein structure is not compact. However, the existence of a structural nucleus, of which the ordered conformation remains stabilized even at more than 80 degrees C, was evidenced. The overall structure and the thermal stability of BldB were sensitive to pH, suggesting a proton-induced conformation change. Altogether, the results provide the first detailed characterization on the biophysical and structural property of the putative DNA-binding protein, BldB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号