首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zabel MD  Bunch PK  Clark DP 《Microbios》2000,101(399):89-103
The thdF gene of Escherichia coli encodes a 48 kD protein which is involved in the oxidation of derivatives of the sulphur-containing heterocycle thiophene and which appears to be induced during stationary phase. In this work the upstream regulatory region of the thdF gene was isolated by polymerase chain reaction and inserted in front of the lacZ structural gene. Examination of the resulting thdF-lacZ operon fusions showed that expression of the thdF gene increased as E. coli entered the stationary phase. However, the expression of thdF was not dependent on RpoS (KatF), the stationary phase sigma factor. The thdF gene was subject to substantial catabolite repression by glucose and its expression was also greatly decreased in the absence of oxygen. The thdF-lacZ fusions were not significantly affected by elevated temperature or medium of high osmolarity, nor by mutations in thdA, fadR, arcA, arcB, or fnr. Both multicopy, plasmid-borne fusions and single-copy fusions gave similar results in all of the above cases except that the plasmid-borne fusions still showed substantial expression in the absence of oxygen. The heterocyclic compounds thiophene carboxylic acid, furan carboxylic acid and proline increased expression of the thdF gene by 2- to 3-fold, but only during the stationary phase. Tryptophan, indole, and several indole derivatives had no effect.  相似文献   

2.
The nucleotide sequence has been determined for two genes involved in methanol oxidation in the facultative methylotroph, Methylobacterium extorquens AM1. The two genes are moxF, encoding the 66-kDa subunit of the methanol dehydrogenase and moxJ, located immediately downstream from moxF, which encodes a 30-kDa protein with unknown function. This information completes the sequence of the 5.86-kb XhoI-SalI fragment containing the moxFJGI region in M. extorquens AM1, and the structure of this gene cluster is presented. Evidence is presented that moxJ is also present in Paracoccus denitrificans. The aa sequence of MoxJ has provided little information concerning its function, but it does appear to contain a signal sequence suggesting a periplasmic location.  相似文献   

3.
4.
The 17-kb kps gene cluster encodes proteins necessary for the synthesis, assembly, and translocation of the polysialic acid capsule of Escherichia coli K1. We previously reported that one of these genes, kpsD, encodes a 60-kDa periplasmic protein that is involved in the translocation of the polymer to the cell surface. The nucleotide sequence of the 2.4-kb BamHI-PstI fragment accommodating the kpsD gene was determined. Sequence analysis showed an open reading frame for a 558-amino-acid protein with a typical N-terminal prokaryotic signal sequence corresponding to the first 20 amino acids. KpsD was overexpressed, partially purified, and used to prepare polyclonal antiserum. A chromosomal insertion mutation was generated in the kpsD gene and results in loss of surface expression of the polysialic acid capsule. Immunodiffusion analysis and electron microscopy indicated that polysaccharide accumulates in the periplasmic space of mutant cells. A wild-type copy of kpsD supplied in trans complemented the chromosomal mutation, restoring extracellular expression of the K1 capsule. However, a kpsD deletion derivative (kpsD delta C11), which results in production of a truncated KpsD protein lacking its 11 C-terminal amino acids, was nonfunctional. Western blot (immunoblot) data from cell fractions expressing KpsD delta C11 suggest that the truncated protein was inefficiently exported into the periplasm and localized primarily to the cytoplasmic membrane.  相似文献   

5.
6.
The relationship between the rat liver non-specific lipid-transfer protein (nsLTP) and the 58-kDa protein cross-reactive with anti-nsLTP antibodies, was investigated by cDNA analysis. A 1945-bp cDNA clone was isolated which encodes a 58.7-kDa protein. This protein is identical to the 58-kDa immunoreactive protein determined by N-terminal sequence analysis of the purified 58-kDa protein. It consists of 546 amino acid residues, of which the 123 C-terminal residues are identical to the sequence of nsLTP. The N-terminal 400 amino acid residues of the 58.7-kDa protein were found to have 23.5% identity with the sequence of both mitochondrial and peroxisomal rat 3-oxoacyl-CoA thiolases, including a hypothetical substrate-binding site. The cDNA insert hybridizes with 1.1-kb, 1.7-kb, 2.4-kb and 3.0-kb mRNA species in RNA isolated from various rat tissues and from Chinese hamster ovary (CHO) cells. Southern blot analysis suggests that these mRNA species are generated from a single gene. Mutant CHO cells, deficient in peroxisomes, lack nsLTP. We have found that the mRNA encoding nsLTP is still present in these cells, which suggests that the absence of this protein is related to the lack of peroxisomes.  相似文献   

7.
8.
9.
The translation products of chromosomal DNAs of Pseudomonas aeruginosa encoding phospholipase C (heat-labile hemolysin) have been examined in T7 promoter plasmid vectors and expressed in Escherichia coli cells. A plasmid carrying a 4.7-kilobase (kb) DNA fragment was found to encode the 80-kilodalton (kDa) phospholipase C as well as two more proteins with an apparent molecular mass of 26 and 19 kDa. Expression directed by this DNA fragment with various deletions suggested that the coding region for the two smaller proteins was contained in a 1-kb DNA region. Moreover, the size of both proteins was reduced by the same amount by an internal BglII-BglII DNA deletion, suggesting that they were translated from overlapping genes. Similar results were obtained with another independently cloned 6.1-kb Pseudomonas DNA, which in addition coded for a 31-kDa protein of opposite orientation. The nucleotide sequence of the 1-kb region above revealed an open reading frame with a signal sequence typical of secretory proteins and a potential in-phase internal translation initiation site. Pulse-chase and localization studies in E. coli showed that the 26-kDa protein was a precursor of a secreted periplasmic 23-kDa protein (PlcR1) while the 19-kDa protein (PlcR2) was mostly cytoplasmic. These results indicate the expression of Pseudomonas in-phase overlapping genes in E. coli.  相似文献   

10.
The tryptophanase structural gene, tnaA, of Escherichia coli K-12 was cloned and sequenced. The size, amino acid composition, and sequence of the protein predicted from the nucleotide sequence agree with protein structure data previously acquired by others for the tryptophanase of E. coli B. Physiological data indicated that the region controlling expression of tnaA was present in the cloned segment. Sequence data suggested that a second structural gene of unknown function was located distal to tnaA and may be in the same operon. The pattern of codon usage in tnaA was intermediate between codon usage in four of the ribosomal protein structural genes and the structural genes for three of the tryptophan biosynthetic proteins.  相似文献   

11.
We describe the cloning and sequencing of a gene from the cyanobacterium Synechococcus sp. strain PCC7942, designated irpA (iron-regulated protein A), that encodes for a protein involved in iron acquisition or storage. Polyclonal antibodies raised against proteins which accumulate during iron-deficient growth were used as probes to isolate immunopositive clones from a lambda gt11 genomic expression library. The clone, designated lambda gtAN26, carried a 1.7-kilobase (kb) chromosomal DNA insert and was detected by cross-reactivity with antibody against a 36-kilodalton protein. It was possible to map a 20-kb portion of the chromosome with various DNA probes from lambda gt11 and lambda EMBL-3 clones, and Southern blot analysis revealed that the irpA gene was present in a single copy and localized within a 1.7-kb PstI fragment. DNA sequencing revealed an open reading frame of 1,068 nucleotides capable of encoding 356 amino acids which yields a protein with a molecular weight of 38,584. The hydropathy profile of the polypeptide indicated a putative N-terminal signal sequence of 44 amino acid residues. IrpA is a cytoplasmic membrane protein as determined by biochemistry and electron microscopy immunocytochemistry. The upstream region of the irpA gene contained a consensus sequence similar to the aerobactin operator in Escherichia coli. This fact, plus a mutant with a mutation in irpA that is unable to grow under iron-deficient conditions, led us to suggest that irpA is regulated by iron and that the gene product is involved in iron acquisition or storage.  相似文献   

12.
In Azotobacter chroococcum the hydrogenase structural genes (hupSL) cover about 2.8 kb of a 15-kb region associated with hydrogen-uptake (Hup) activity. Two other genes in this region, hupD and hupE, were located 8.9 kb downstream of hupL and were shown to be essential for hydrogenase activity by insertion mutagenesis. A fragment of DNA beginning 3.4 kb downstream of hupL was able to complement the hupE mutant, supporting earlier evidence for a promoter downstream of hupSL. Hybridization experiments showed that hupD and hupE share some similarity with a region of Alcaligenes eutrophus DNA which is apparently involved in the formation of catalytically active hydrogenase. The hupD gene encodes a 379-amino acid, 41.4-kDa polypeptide while hupE codes for a 341-amino acid, 36.1-kDa product. The predicted amino acid sequences of the hupD and hupE genes are homologous to the Escherichia coli hypD and hypE gene products, respectively. A polar mutation in hupD had no effect on beta-galactosidase activity in a strain also carrying a hupL-lacZ fusion, indicating that hupD and hupE are probably not involved in regulating hydrogenase structural gene expression.  相似文献   

13.
Steroid hormones are synthesized by a complex array of 10 enzymes. The genes for each of these have now been cloned, and previous work has determined the regional chromosomal assignments of six of these. We used in situ hybridization to determine the regional chromosomal assignments of the four remaining enzymes. The CYP11A1 gene encodes mitochondrial P450scc, which converts cholesterol to pregnenolone, and is located on 15q23-q24. The gene for adrenodoxin, which receives electrons from adrenodoxin reductase and transfers them to P450scc, is on 11q22 while its pseudogenes are on 20q11-q12. The gene for adrenodoxin reductase is on 17q24-q25. The CYP17 gene encodes P450c17, which has both 17 alpha-hydroxylase and 17,20-lyase activities, and is located on 10q24-q25. None of the 10 genes involved in human steroidogenesis is closely linked to another gene for a steroidogenic enzyme.  相似文献   

14.
C Li  H D Peck  A E Przybyla 《Gene》1987,53(2-3):227-234
The structural genes for 3'-phosphoadenylyl sulfate (PAPS) reductase (cysH) and sulfite reductase (alpha and beta subunits; EC 1.8.1.2)(cysI and cysJ) of Escherichia coli K-12 have been cloned by complementation. pCYSI contains two PstI fragments (18.3 and 2.9 kb) which complement cysH-, cysI-, and cysJ- mutants. Subcloning showed that the cysH gene is located on a 1.6-kb ClaI subfragment (pCYSI-3) whereas cysI and most of cysJ are carried on a 3.7-kb ClaI subfragment (pCYSI-5). The PAPS reductase gene is closely linked to the sulfite reductase genes, but its expression is regulated by a unique promoter. The cysI and cysJ genes, on the other hand, are transcribed as an operon and the promoter precedes the cysI gene. Maxicell analysis demonstrated that pCYSI encodes three polypeptides of Mr 27,000, 57,000, and 60,000, in addition to the tetracycline-resistance determinant. The 60- and 57-kDa proteins are most likely the alpha and beta subunits, respectively, of E. coli sulfite reductase while the 27-kDa protein is putatively identified as PAPS reductase. Preliminary data suggest that the alpha and beta subunits of sulfite reductase are encoded by cysI and cysJ, respectively.  相似文献   

15.
16.
A recombinant bacteriophage containing the intact Bacillus brevis gene for gramicidin S synthetase 1, grsA, and the 5' end of the gramicidin S synthetase 2 gene, grsB, was identified by screening an EMBL3 library with anti-GrsA antibodies. This clone, EMBL315, has a 14-kilobase (kb) insert that hybridizes to the previously isolated 3.9-kb fragment of the grsB gene, which encodes the 155-kilodalton ornithine-activating domain of gramicidin S synthetase 2. Deletion and subcloning experiments with the 14-kb insert located the grsA structural gene and its putative promoter on a 4.5-kb PvuII fragment which encoded the full-length 120-kilodalton protein in Escherichia coli. In addition, hybridization analysis revealed that the 5' end of the grsB gene is located approximately 3 kb from the grsA structural gene. Furthermore, these studies indicated that grsA and grsB are transcribed in opposite orientations.  相似文献   

17.
18.
19.
We have used a reverse genetics approach to isolate genes encoding two subunits of Drosophila melanogaster RNA polymerase II. RpII18 encodes the 18-kDa subunit and maps cytogenetically to polytene band region 83A. RpII140 encodes the 140-kDa subunit and maps to polytene band region 88A10:B1,2. Focusing on RpII140, we used in situ hybridization to map this gene to a small subinterval defined by the endpoints of a series of deficiencies impinging on the 88A/B region and showed that it does not represent a previously known genetic locus. Two recently defined complementation groups, A5 and Z6, reside in the same subinterval and thus were candidates for the RpII140 locus. Phenotypes of A5 mutants suggested that they affect RNA polymerase II, in that the lethal phase and the interaction with developmental loci such as Ubx resemble those of mutants in the gene for the largest subunit, RpII215. Indeed, we have achieved complete genetic rescue of representative recessive lethal mutations of A5 with a P-element construct containing a 9.1-kb genomic DNA fragment carrying RpII140. Interestingly, the initial construct also rescued lethal alleles in the neighboring complementation group, Z6, revealing that the 9.1-kb insert carries two genes. Deleting coding region sequences of RpII140, however, yielded a transformation vector that failed to rescue A5 alleles but continued to rescue Z6 alleles. These results strongly support the conclusion that the A5 complementation group is equivalent to the genomic RpII140 locus.  相似文献   

20.
Dorsey CW  Actis LA 《Plasmid》2004,51(2):116-126
The formaldehyde resistance of Escherichia coli VU3695 is due to the expression of glutathione-dependent formaldehyde dehydrogenase (GSH-FDH) activity, which is encoded by the adhC gene located on the plasmid pVU3695. Conjugation of this plasmid to an unrelated PolA deficient strain of E. coli indicated that it encodes its own replication initiation protein and does not confer resistance to several other antimicrobial agents tested in this work. In addition, pVU3695 has homology with replicons that belong to the IncL/M plasmid incompatibility group, which are widely distributed among the Enterobacteriaceae. Curing of pVU3695 abolished the expression of formaldehyde resistance and the presence of a 46-kDa periplasmic protein immunologically related to GSH-FDH. However, the curing of pVU3695 reduced drastically but did not abolish the expression of a protein with similar electrophoretic motility, which was associated with the expression of GSH-FDH activity still present in the cytoplasm of the plasmidless derivative. The data demonstrate that E. coli VU3695 contains a chromosomal and a plasmid copy of adhC actively expressed, with the latter being involved in resistance to exogenous formaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号