首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Encapsidation of the pregenomic RNA into nucleocapsids is a selective process which depends on specific RNA-protein interactions. The signal involved in the packaging of the hepatitis B virus (HBV) RNA pregenome was recently defined as a short sequence located near the 5' end of that molecule (Junker-Niepmann et al., EMBO J., in press), but it remained an open question which viral proteins are required. Using a genetic approach, we analyzed whether proteins derived from the HBV P gene play an important role in pregenome encapsidation. The results obtained with point mutations, deletions, and insertions scattered throughout the P gene clearly demonstrate that (i) a P gene product containing all functional domains is required both for the encapsidation of HBV pregenomic RNA and for packaging of nonviral RNAs fused to the HBV encapsidation signal, (ii) known enzymatic activities are not involved in the packaging reaction, suggesting that P protein is required as a structural component, and (iii) P protein acts primarily in cis, i.e., pregenomic RNAs from which P protein is synthesized are preferentially encapsidated.  相似文献   

4.
A system for studying the selective encapsidation of hepadnavirus RNA.   总被引:13,自引:10,他引:3       下载免费PDF全文
J Lavine  R Hirsch    D Ganem 《Journal of virology》1989,63(10):4257-4263
  相似文献   

5.
6.
7.
8.
9.
Nucleocapsid assembly in hepadnavirus replication requires selective encapsidation of the pregenomic RNA template and the viral polymerase by the core proteins. It has been shown that an encapsidation signal located at the 5' end of the pregenomic RNA is responsible for its interaction with the polymerase. In the present study, we have shown that a region located at the 3' periphery of the core open reading frame may interact with the viral polymerase in duck hepatitis B virus. By using an in vitro rabbit reticulocyte lysate translation system, we found that interaction of the polymerase with this region resulted in selective suppression of core mRNA translation. Insertion of this putative inhibitory sequence into the CD4 gene also led to a selective inhibition of CD4 mRNA translation in the presence of polymerase. Specific inhibition of core protein synthesis was observed in a chicken hepatoma cell line (LMH) cotransfected with core and polymerase plasmid DNA.  相似文献   

10.
11.
Wang Z  Ni J  Li J  Shi B  Xu Y  Yuan Z 《Journal of virology》2011,85(21):11457-11467
Cellular inhibitor of apoptosis protein 2 (cIAP2) is a potent suppressor of apoptotic cell death. We have shown previously that cIAP2 is involved in the tumor necrosis factor alpha (TNF-α)-induced anti-hepatitis B virus (HBV) response; however, the mechanism for this antiviral effect remains unclear. In the present study, we demonstrate that cIAP2 can significantly reduce the levels of HBV DNA replication intermediates but not the total viral RNA or core protein levels. Domain-mapping analysis revealed that the carboxy-terminal domains of cIAP2 were indispensable for this anti-HBV ability and that an E3 ligase-deficient mutant of cIAP2 (termed cIAP2*) completely lost its antiviral activity. We further identified HBV polymerase as the target of cIAP2. Overexpression of cIAP2 but not cIAP2* reduced polymerase protein levels, while cIAP2 knockdown increased polymerase expression. In addition, we observed that cIAP2 promoted the degradation of the viral polymerase through a proteasome-dependent pathway. Further experiments demonstrated that cIAP2 can bind to polymerase and promote its polyubiquitylation. Finally, we found that cIAP2 downregulated the encapsidation of HBV pregenomic RNA. Taken together, these data reveal a novel mechanism for the inhibition of HBV replication by cIAP2 via acceleration of the ubiquitin-proteasome-mediated decay of polymerase and reduction of the encapsidation of HBV pregenomic RNA, making this mechanism a novel strategy for HBV therapy.  相似文献   

12.
13.
14.
The carboxy-terminal domain (CTD) of the core protein of hepatitis B virus is not necessary for capsid assembly. However, the CTD does contribute to encapsidation of pregenomic RNA (pgRNA). The contribution of the CTD to DNA synthesis is less clear. This is the case because some mutations within the CTD increase the proportion of spliced RNA to pgRNA that are encapsidated and reverse transcribed. The CTD contains four clusters of consecutive arginine residues. The contributions of the individual arginine clusters to genome replication are unknown. We analyzed core protein variants in which the individual arginine clusters were substituted with either alanine or lysine residues. We developed assays to analyze these variants at specific steps throughout genome replication. We used a replication template that was not spliced in order to study the replication of only pgRNA. We found that alanine substitutions caused defects at both early and late steps in genome replication. Lysine substitutions also caused defects, but primarily during later steps. These findings demonstrate that the CTD contributes to DNA synthesis pleiotropically and that preserving the charge within the CTD is not sufficient to preserve function.  相似文献   

15.
M Kann  W H Gerlich 《Journal of virology》1994,68(12):7993-8000
Phosphorylation of core particles derived either from hepatitis B viruses or from livers of hepatitis B-infected individuals has been long recognized, but the nature and function of the phosphorylating enzyme remained unknown. By immunoblotting with a monoclonal antibody, we have now detected protein kinase C within the liver-derived core particles. To study the significance of the encapsidated protein kinase C for the viral life cycle, we established an in vitro assembly system consisting of Escherichia coli-expressed core protein, protein kinase C, and in vitro-synthesized hepatitis B virus RNA. Phosphorylation of the core protein led to a reduced RNA encapsidation capacity of the core particles. Furthermore, RNA and protein kinase C competed for their target sequence, which is the carboxy-terminal arginine-rich domain of the core protein. This finding implies that phosphorylation of the nucleic acid binding site in the core protein occurs within the particles after encapsidation of protein kinase C, pregenomic RNA, and viral polymerase at a later step during viral genome maturation.  相似文献   

16.
17.
Hepadnaviruses, as well as other pararetroviruses, express their pol (P) gene product unfused to the preceding core gene implying that these retroelements have developed a mechanism for initiating assembly and replication that is principally different from the one used by retroviruses and retrotransposons. We have analysed this mechanism for the human hepatitis B virus by using a newly developed, highly sensitive detection method based upon radiolabelling of the P protein at newly introduced target sites for protein kinase A. The results obtained demonstrate that polymerase encapsidation depends on the concomittant encapsidation of the HBV RNA pregenome and that packaging of the viral RNA, in turn, depends on the presence of P protein. Loss of P protein encapsidation by mutations inactivating the HBV RNA encapsidation signal epsilon could be compensated by trans-complementation with recombinant RNA molecules carrying the epsilon sequence. Thus, in contrast to retroviral replication, the interaction of the hepadnaviral P protein and the RNA genome at its packaging signal appears to be crucial for initiating the formation of replication-competent nucleocapsids. Furthermore, RNA control of P protein packaging stringently limits the number of polymerase molecules that can be encapsidated.  相似文献   

18.
Sindbis virus is an enveloped positive-sense RNA virus in the alphavirus genus. The nucleocapsid core contains the genomic RNA surrounded by 240 copies of a single capsid protein. The capsid protein is multifunctional, and its roles include acting as a protease, controlling the specificity of RNA that is encapsidated into nucleocapsid cores, and interacting with viral glycoproteins to promote the budding of mature virus and the release of the genomic RNA into the newly infected cell. The region comprising amino acids 81 to 113 was previously implicated in two processes, the encapsidation of the viral genomic RNA and the stable accumulation of nucleocapsid cores in the cytoplasm of infected cells. In the present study, specific amino acids within this region responsible for the encapsidation of the genomic RNA have been identified. The region that is responsible for nucleocapsid core accumulation has considerable overlap with the region that controls encapsidation specificity.  相似文献   

19.
Previously, human hepatitis B virus (HBV) mutant 164, which has a truncation at the C terminus of the HBV core antigen (HBcAg), was speculated to secrete immature genomes. For this study, we further characterized mutant 164 by different approaches. In addition to the 3.5-kb pregenomic RNA (pgRNA), the mutant preferentially encapsidated the 2.2-kb or shorter species of spliced RNA, which can be reverse transcribed into double-stranded DNA before virion secretion. We observed that mutant 164 produced less 2.2-kb spliced RNA than the wild type. Furthermore, it appeared to produce at least two different populations of capsids: one encapsidated a nuclease-sensitive 3.5-kb pgRNA while the other encapsidated a nuclease-resistant 2.2-kb spliced RNA. In contrast, the wild-type core-associated RNA appeared to be resistant to nuclease. When arginines and serines were systematically restored at the truncated C terminus, the core-associated DNA and nuclease-resistant RNA gradually increased in both size and signal intensity. Full protection of encapsidated pgRNA from nuclease was observed for HBcAg 1-171. A full-length positive-strand DNA phenotype requires positive charges at amino acids 172 and 173. Phosphorylation at serine 170 is required for optimal RNA encapsidation and a full-length positive-strand DNA phenotype. RNAs encapsidated in Escherichia coli by capsids of HBcAg 154, 164, and 167, but not HBcAg 183, exhibited nuclease sensitivity; however, capsid instability after nuclease treatment was observed only for HBcAg 164 and 167. A new hypothesis is proposed here to highlight the importance of a balanced charge density for capsid stability and intracapsid anchoring of RNA templates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号