首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the compositional and structural differences in sequences derived from different fractions of wheat genomic DNA obtained using methylation filtration and Cot fractionation. Comparative analysis of these sequences revealed large compositional and structural variations in terms of GC content, different structural elements including repeat sequences (e.g., transposable elements and simple sequence repeats),protein coding genes, and non-coding RNA genes. A correlation between methylation status [determined on the basis of selective inclusion/exclusion in methylation-filtered (MF) library]of different repeat elements and expression level was observed. The expression levels were determined by comparing MF sequences with expressed sequence tags (ESTs) available in the public domain. Only a limited overlap among MF,high Cot (HC), and ESTs was observed, suggesting that these sequences may largely either represent the low-copy non-transcribed sequences or include genes with low expression levels. Thus, these results indicated a need to study MF and HC sequences along with ESTs to fully appreciate complexity of wheat gene space.  相似文献   

2.
Using two divergent nucleotide binding site (NBS) regions from wheat sequences of the NBS-LRR (leucine rich repeat) class, we retrieved 211 wheat and barley NBS-containing resistance gene analogue (RGA) expressed sequence tags (ESTs). These ESTs were grouped into 129 gene sequence groups that contained ESTs that were at least 70% identical at the DNA level over at least 200 bp. Probes were obtained for 89 of these RGA families and chromosome locations were determined for 72 of these probes using nullitetrasomic Chinese Spring wheat lines. RFLP analysis of 49 of these RGA probes revealed 65 mappable polymorphic bands in the doubled haploid Cranbrook × Halberd wheat population (C × H). These bands mapped to 49 loci in C × H. RGA loci were detected on all 21 chromosomes using the nullitetrasomic lines and on 18 chromosomes (linkage groups) in the C × H map. This identified a set of potential markers that could be developed further for use in mapping and ultimately cloning NBS-LRR-type disease resistance genes in wheat.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

3.
4.
Sequence composition, organization, and evolution of the core Triticeae genome   总被引:13,自引:0,他引:13  
We investigated the composition and the basis of genome expansion in the core Triticeae genome using Aegilops tauschii, the D-genome donor of bread wheat. We sequenced an unfiltered genomic shotgun (trs) and a methylation-filtration (tmf) library of A. tauschii, and analyzed wheat expressed sequence tags (ESTs) to estimate the expression of genes and transposable elements (TEs). The sampled D-genome sequences consisted of 91.6% repetitive elements, 2.5% known genes, and 5.9% low-copy sequences of unknown function. TEs constituted 68.2% of the D-genome compared with 50% in maize and 14% in rice. The DNA transposons constituted 13% of the D-genome compared with 2% in maize. TEs were methylated unevenly within and among elements and families, and most were transcribed which contributed to genome expansion in the core Triticeae genome. The copy number of a majority of repeat families increased gradually following polyploidization. Certain TE families occupied discrete chromosome territories. Nested insertions and illegitimate recombination occurred extensively between the TE families, and a majority of the TEs contained internal deletions. The GC content varied significantly among the three sequence sets examined ranging from 42% in tmf to 46% in trs and 52% in the EST. Based on enrichment of genic sequences, methylation-filtration offers one option, although not as efficient as in maize, for isolating gene-rich regions from the large genome of wheat.  相似文献   

5.
6.
The complete set of unique γ-gliadin genes is described for the wheat cultivar Chinese Spring using a combination of expressed sequence tag (EST) and Roche 454 DNA sequences. Assemblies of Chinese Spring ESTs yielded 11 different γ-gliadin gene sequences. Two of the sequences encode identical polypeptides and are assumed to be the result of a recent gene duplication. One gene has a 3′ coding mutation that changes the reading frame in the final eight codons. A second assembly of Chinese Spring γ-gliadin sequences was generated using Roche 454 total genomic DNA sequences. The 454 assembly confirmed the same 11 active genes as the EST assembly plus two pseudogenes not represented by ESTs. These 13 γ-gliadin sequences represent the complete unique set of γ-gliadin genes for cv Chinese Spring, although not ruled out are additional genes that are exact duplications of these 13 genes. A comparison with the ESTs of two other hexaploid cultivars (Butte 86 and Recital) finds that the most active genes are present in all three cultivars, with exceptions likely due to too few ESTs for detection in Butte 86 and Recital. A comparison of the numbers of ESTs per gene indicates differential levels of expression within the γ-gliadin gene family. Genome assignments were made for 6 of the 13 Chinese Spring γ-gliadin genes, i.e., one assignment from a match to two γ-gliadin genes found within a tetraploid wheat A genome BAC and four genes that match four distinct γ-gliadin sequences assembled from Roche 454 sequences from Aegilops tauschii, the hexaploid wheat D-genome ancestor.  相似文献   

7.
Plant genomics projects involving model species and many agriculturally important crops are resulting in a rapidly increasing database of genomic and expressed DNA sequences. The publicly available collection of expressed sequence tags (ESTs) from several grass species can be used in the analysis of both structural and functional relationships in these genomes. We analyzed over 260000 EST sequences from five different cereals for their potential use in developing simple sequence repeat (SSR) markers. The frequency of SSR-containing ESTs (SSR-ESTs) in this collection varied from 1.5% for maize to 4.7% for rice. In addition, we identified several ESTs that are related to the SSR-ESTs by BLAST analysis. The SSR-ESTs and the related sequences were clustered within each species in order to reduce the redundancy and to produce a longer consensus sequence. The consensus and singleton sequences from each species were pooled and clustered to identify cross-species matches. Overall a reduction in the redundancy by 85% was observed when the resulting consensus and singleton sequences (3569) were compared to the total number of SSR-EST and related sequences analyzed (24606). This information can be useful for the development of SSR markers that can amplify across the grass genera for comparative mapping and genetics. Functional analysis may reveal their role in plant metabolism and gene evolution.  相似文献   

8.
Plant, and particularly cereal genomes, are challenging to sequence due to their large size and high repetitive DNA content. Gene-enrichment strategies are alternative or complementary approaches to complete genome sequencing that yield, rapidly and inexpensively, useful sequence data from large and complex genomes. The maize genome is large (2.7 Gbp) and contains large amounts of conserved repetitive elements. Furthermore, the high allelic diversity found between maize inbred lines may necessitate sequencing several inbred lines in order to recover the maize "gene pool". Two gene-enrichment approaches, methylation filtration (MF) and high C(o)t (HC) sequencing have been tested in maize and their ability to sample the gene space has been examined. Combined with other genomic sequencing strategies, gene-enriched genomic sequencing is a practical way to examine the maize gene pool, to order and orient the genic sequences on the genome, and to enable investigation of gene content of other complex plant genomes.  相似文献   

9.
10.
Using a strategy requiring only modest computational resources, wheat expressed sequence tag (EST) sequences from various sources were assembled into contigs and compared with a nonredundant barley sequence assembly, with ESTs, with complete draft genome sequences of rice and Arabidopsis thaliana, and with ESTs from other plant species. These comparisons indicate that (i) wheat sequences available from public sources represent a substantial proportion of the diversity of wheat coding sequences, (ii) prediction of open reading frames in the whole genome sequence improves when supplemented with EST information from other species, (iii) a substantial number of candidates for novel genes that are unique to wheat or related species can be identified, and (iv) a smaller number of genes can be identified that are common to monocots and dicots but absent from Arabidopsis. The sequences in the last group may have been lost from Arabidopsis after descendance from a common ancestor. Examples of potential novel wheat genes and Triticeae-specific genes are presented.  相似文献   

11.
12.

Background

Wheat is an excellent species to study freezing tolerance and other abiotic stresses. However, the sequence of the wheat genome has not been completely characterized due to its complexity and large size. To circumvent this obstacle and identify genes involved in cold acclimation and associated stresses, a large scale EST sequencing approach was undertaken by the Functional Genomics of Abiotic Stress (FGAS) project.

Results

We generated 73,521 quality-filtered ESTs from eleven cDNA libraries constructed from wheat plants exposed to various abiotic stresses and at different developmental stages. In addition, 196,041 ESTs for which tracefiles were available from the National Science Foundation wheat EST sequencing program and DuPont were also quality-filtered and used in the analysis. Clustering of the combined ESTs with d2_cluster and TGICL yielded a few large clusters containing several thousand ESTs that were refractory to routine clustering techniques. To resolve this problem, the sequence proximity and "bridges" were identified by an e-value distance graph to manually break clusters into smaller groups. Assembly of the resolved ESTs generated a 75,488 unique sequence set (31,580 contigs and 43,908 singletons/singlets). Digital expression analyses indicated that the FGAS dataset is enriched in stress-regulated genes compared to the other public datasets. Over 43% of the unique sequence set was annotated and classified into functional categories according to Gene Ontology.

Conclusion

We have annotated 29,556 different sequences, an almost 5-fold increase in annotated sequences compared to the available wheat public databases. Digital expression analysis combined with gene annotation helped in the identification of several pathways associated with abiotic stress. The genomic resources and knowledge developed by this project will contribute to a better understanding of the different mechanisms that govern stress tolerance in wheat and other cereals.  相似文献   

13.
Brachypodium distachyon (Brachypodium) has been recently recognized as an emerging model system for both comparative and functional genomics in grass species. In this study, 55,221 repeat masked Brachypodium BAC end sequences (BES) were used for comparative analysis against the 12 rice pseudomolecules. The analysis revealed that ~26.4% of BES have significant matches with the rice genome and 82.4% of the matches were homologous to known genes. Further analysis of paired-end BES and ~1.0 Mb sequences from nine selected BACs proved to be useful in revealing conserved regions and regions that have undergone considerable genomic changes. Differential gene amplification, insertions/deletions and inversions appeared to be the common evolutionary events that caused variations of microcolinearity at different orthologous genomic regions. It was found that ~17% of genes in the two genomes are not colinear in the orthologous regions. Analysis of BAC sequences also revealed higher gene density (~9 kb/gene) and lower repeat DNA content (~13.1%) in Brachypodium when compared to the orthologous rice regions, consistent with the smaller size of the Brachypodium genome. The 119 annotated Brachypodium genes were BLASTN compared against the wheat EST database and deletion bin mapped wheat ESTs. About 77% of the genes retrieved significant matches in the EST database, while 9.2% matched to the bin mapped ESTs. In some cases, genes in single Brachypodium BACs matched to multiple ESTs that were mapped to the same deletion bins, suggesting that the Brachypodium genome will be useful for ordering wheat ESTs within the deletion bins and developing specific markers at targeted regions in the wheat genome.  相似文献   

14.
白粉病菌诱导的小麦表达序列标签(EST)研究(英)   总被引:1,自引:0,他引:1  
白粉病是我国小麦的主要病害之一。尝试用表达序列标签 (expressedsequencetags,EST)技术 ,研究了经白粉病菌诱导后的小麦基因表达。从构建的普通cDNA文库中随机挑取约 15 0 0个阳性克隆并进行测序 ,获不重复ESTs序列 387条。不重复序列均获GenBank的存储号。其中 4 9.4 %的序列与已知基因同源 ,196条序列功能未知 ,84条序列为新ESTs。将不重复序列制备成高密度点阵膜 ,用差示杂交法筛选到几个抗病相关序列。  相似文献   

15.
The alpha-tubulins and beta-tubulins are the major constituents of microtubules, which have been recognized as important structural elements in cell growth and morphogenesis, and, recently, for their role in regulation and signal transduction. We have identified 15 full-length cDNAs for the members of the alpha-tubulin gene family in hexaploid bread wheat (Triticum aestivum L.). The genes were clustered into 5 homeologous groups of 3 genes. Representatives of the 5 homeologous groups were mapped to different chromosome arms, and the genome of origin was determined for each gene. Changes in mRNA levels were observed for the paralogous members of the gene family during cold acclimation. Three members of the family had initial decreases in mRNA levels in response to cold treatment, which were followed by increases, each with a different pattern of reinduction. One gene-family member showed increased mRNA for up to 14 d during cold acclimation and had decreased levels after 36 d of cold treatment; a fifth paralogous member of the gene family had slowly declining mRNA levels up to 36 d. Subtle differences in the level of gene expression among homeologs and large differences among paralogs were detected by comparing the relative abundance of wheat alpha-tubulin expressed sequence tags (ESTs) in public databases.  相似文献   

16.
Compared to rice, wheat exhibits characteristic growth habits and contains complex genome constituents. To assess global changes in gene expression patterns in the wheat life cycle, we conducted large-scale analysis of expressed sequence tags (ESTs) in common wheat. Ten wheat tissues were used to construct cDNA libraries: crown and root from 14-day-old seedlings; spikelet from early and late flowering stages; spike at the booting stage, heading date and flowering date; pistil at the heading date; and seeds at 10 and 30 days post-anthesis. Several thousand colonies were randomly selected from each of these 10 cDNA libraries and sequenced from both 5' and 3' ends. Consequently, a total of 116 232 sequences were accumulated and classified into 25 971 contigs based on sequence homology. By computing abundantly expressed ESTs, correlated expression patterns of genes across the tissues were identified. Furthermore, relationships of gene expression profiles among the 10 wheat tissues were inferred from global gene expression patterns. Genes with similar functions were grouped with one another by clustering gene expression profiles. This technique might enable estimation of the functions of anonymous genes. Multidimensional analysis of EST data that is analogous to the microarray experiments may offer new approaches to functional genomics of plants.  相似文献   

17.
EST derived SSR markers for comparative mapping in wheat and rice   总被引:18,自引:0,他引:18  
Structural and functional relationships between the genomes of hexaploid wheat (Triticum aestivum L.) (2n=6x=42) and rice (Oryza sativa L.) (2n=2x=24) were evaluated using linkage maps supplemented with simple sequence repeat (SSR) loci obtained from publicly available expressed sequence tags (ESTs). EST-SSR markers were developed using two main strategies to design primers for each gene: (1) primer design for multiple species based on supercluster analysis, and (2) species-specific primer design. Amplification was more consistent using the species-specific primer design for each gene. Forty-four percent of the primers designed specifically for wheat sequences were successful in amplifying DNA from both species. Existing genetic linkage maps were enhanced for the wheat and rice genomes using orthologous loci amplified with 58 EST-SSR markers obtained from both wheat and rice ESTs. The PCR-based anchor loci identified by these EST-SSR markers support previous patterns of conservation between wheat and rice genomes; however, there was a high frequency of interrupted colinearity. In addition, multiple loci amplified by these primers made the comparative analysis more difficult. Enhanced comparative maps of wheat and rice provide a useful tool for interpreting and transferring molecular, genetic, and breeding information between these two important species. These EST-SSR markers are particularly useful for constructing comparative framework maps for different species, because they amplify closely related genes to provide anchor points across species.Communicated by R. Hagemann  相似文献   

18.
DNA methylation is an epigenetic phenomenon associated with gene silencing in transgenic plants, retrotransposons and virus infection. Expression analysis of specific genes in Arabidopsis methylation mutants showed an association between DNA methylation and gene expression. To determine whether DNA methylation is associated with resistance to black Sigatoka (BS) andMycosphaerella fijiensis (MF), we used anin vitro assay of mesophyll cell suspensions of reference cultivars with known resistance to BS. Methylation of CCmGG sequences was evaluated by methylation-sensitive amplification polymorphism (MSAP) markers of reference cultivars and somaclonal variants to identify molecular markers associated with resistance to MF toxins and BS. Four MSAP markers were associated with resistance (MAR) to MF toxins. The MSAP markers show a high degree of sequence similarity with resistance gene analog and with retrotransposon sequences. The MSAP markers are useful as molecular indicators of tolerance to MF toxins and resistance to BS.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号