首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Behavioral sensitization of psychostimulants was accompanied by alterations in a variety of biochemical molecules in different brain regions. However, which change is actually related to drug-produced sensitization lacks of accurate clarification. In this study, we investigated the role of integrin-linked kinase (ILK) in both the induction and expression of cocaine sensitization. Conditional inhibition of ILK expression was established in the nucleus accumbens (NAc) core by microinjecting recombinant adeno-associated virus-carrying, tetracycline-on-regulated small interfering RNA which reversed the chronic cocaine-induced psychomotor sensitization, as well as the changes in protein kinase B Ser473 phosphorylation, dendritic density, and dendritic spine numbers locally. Importantly, the reversed psychomotor sensitization did not recover after cessation of the silencing for 8 days. We also demonstrated that inhibition of ILK expression pre- and during-chronic cocaine treatments blocked the induction of cocaine psychomotor sensitization and abolished the stimulant effect of cocaine on ILK expression. In contrast, inhibition of ILK expression in the NAc core has no significant effect on cocaine-induced stereotypical behaviors. This concludes that ILK is involved in cocaine sensitization with the earlier induction and later expression functioning as a kinase to regulate protein kinase B Ser473 phosphorylation and a scaffolding protein to regulate the reorganization of the NAc spine morphology.  相似文献   

2.
Behavioral sensitization to cocaine involves progressive and long-lasting increases in hyperactivity and stereotypy in response to the same daily dose. In order to test whether vasopressin, a neurohormone implicated in drug tolerance and in other models of learning and memory, affected behavioral sensitization, cocaine was administered daily to animals with hereditary absence of vasopressin. Brattleboro homozygotes which lack vasopressin show deficient onset and persistence of cocaine-induced behavioral sensitization compared to heterozygote, litter-mate controls. These data extend previous reports of vasopressin's role in memory and long-term coding of behavior to the model of pharmacologically-induced behavioral sensitization.  相似文献   

3.
4.
Behavioral sensitization is an animal model for aspects of cocaine addiction. Cocaine-sensitized rats exhibit increased AMPA receptor (AMPAR) surface expression in the nucleus accumbens (NAc) which may in turn enhance drug seeking. To identify signaling pathways contributing to AMPAR up-regulation, we measured AMPAR surface expression and signaling pathway activation in the NAc of cocaine-sensitized rats, cocaine-exposed rats that failed to sensitize and saline controls on withdrawal days (WD) 1, 7, and 21. We focused on calcium/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated protein kinase (ERK), and protein kinase A (PKA). In sensitized rats, AMPAR surface expression was elevated on WD7 and WD21 but not WD1. ERK2 activation followed a parallel time-course, suggesting a role in AMPAR up-regulation. Both sensitized and non-sensitized rats exhibited CaMKII activation on WD7, suggesting that CaMKII activation is not sufficient for AMPAR up-regulation. PKA phosphorylation, measured using an antibody recognizing phosphorylated PKA substrates, increased gradually over withdrawal in sensitized rats, from below control levels on WD1 to significantly greater than controls on WD21. Using proteomics, novel sensitization-related PKA substrates were identified, including two structural proteins (CRMP-2 and α-tubulin) that we speculate may link PKA signaling to previously reported dendritic remodeling in NAc neurons of cocaine-sensitized rats.  相似文献   

5.
Phosphatidylinositol 3-kinase (PI3K) is an important signaling molecule involved in cell differentiation, proliferation, survival, and phagocytosis, and may participate in various brain functions. To determine whether it is also involved in cocaine sensitization, we measured the p85alpha/p110 PI3K activity in the nuclear accumbens (NAc) shell, NAc core, and prefrontal cortex (PFC) following establishment of cocaine sensitization and its subsequent reversal. Na?ve rats were rank-ordered and split into either daily cocaine or saline pretreatment group based on their locomotor responses to an acute cocaine injection (7.5 mg/kg, i.p.). These two groups were then injected with cocaine (40 mg/kg, s.c.) or saline for 4 consecutive days followed by 9-day withdrawal. Cocaine sensitization was subsequently reversed by 5 daily injections of the D1/D2 agonist pergolide (0.1 mg/kg, s.c.) in combination with the 5-HT3 antagonist ondansetron (0.2 mg/kg, s.c., 3.5h after pergolide injection). After another 9-day withdrawal, behavioral cocaine sensitization and its reversal were confirmed with an acute cocaine challenge (7.5 mg/kg, i.p.), and animals were sacrificed the next day for measurement of p85alpha/p110 PI3K activity. Cocaine-sensitized animals exhibited increased PI3K activity in the NAc shell, and this increase was reversed by combined pergolide/ondansetron treatment, which also reversed behavioral sensitization. In the NAc core and PFC, cocaine sensitization decreased and increased the PI3K activity, respectively. These changes, in contrast to that in the NAc shell, were not normalized following the reversal of cocaine-sensitization. Interestingly, daily injections of pergolide alone in saline-pretreated animals induced PI3K changes that were similar to the cocaine sensitization-associated changes in the NAc core and PFC but not the NAc shell; furthermore, these changes in saline-pretreated animals were prevented by ondansetron given 3.5h after pergolide. The present study suggests that selective enhancement of the PI3K activity in the NAc shell may be one of key alterations underlying the long-term cocaine sensitization. To the extent cocaine sensitization is an important factor in human cocaine abuse, pharmacological interventions targeted toward the NAc shell PI3K alteration may be useful in cocaine abuse treatment.  相似文献   

6.
Uz T  Javaid JI  Manev H 《Life sciences》2002,70(25):3069-3075
Circadian rhythms might be involved in addictive behaviors. The pineal secretory product melatonin decreases cocaine sensitization in rats; mice mutant for the critical melatonin-synthesizing enzyme, arylalkylamine N-acetyltransferase (AANAT), exhibit altered behaviors. We hypothesized that AANAT/melatonin system, which is up-regulated at night, affects cocaine sensitization in mice. Intraperitoneal cocaine treatment (10 and 20 mg/kg) dose-dependently increased locomotor activity of both normal (C3H/HeJ) and AANAT mutant (C57BL/6J) mice; this effect was similar during the day and at night. Injections of cocaine during the day for three days resulted in behavioral sensitization in normal and AANAT mutant mice whereas treatment at night triggered sensitization in AANAT-deficient mice only. AANAT expression and synthesis of N-acetylserotonin/melatonin could play a role in addictive properties of cocaine.  相似文献   

7.
Ge S  Yang CH  Hsu KS  Ming GL  Song H 《Neuron》2007,54(4):559-566
Active adult neurogenesis occurs in discrete brain regions of all mammals and is widely regarded as a neuronal replacement mechanism. Whether adult-born neurons make unique contributions to brain functions is largely unknown. Here we systematically characterized synaptic plasticity of retrovirally labeled adult-born dentate granule cells at different stages during their neuronal maturation. We identified a critical period between 1 and 1.5 months of the cell age when adult-born neurons exhibit enhanced long-term potentiation with increased potentiation amplitude and decreased induction threshold. Furthermore, such enhanced plasticity in adult-born neurons depends on developmentally regulated synaptic expression of NR2B-containing NMDA receptors. Our study demonstrates that adult-born neurons exhibit the same classic critical period plasticity as neurons in the developing nervous system. The transient nature of such enhanced plasticity may provide a fundamental mechanism allowing adult-born neurons within the critical period to serve as major mediators of experience-induced plasticity while maintaining stability of the mature circuitry.  相似文献   

8.
BACKGROUND: Sensitization to psychostimulant drugs of abuse is thought to be an important aspect of human addiction, yet how it develops is still unclear. The development of sensitization to cocaine in the fruit fly Drosophila melanogaster is strikingly similar to that observed in vertebrates. By taking advantage of the powerful genetic approaches that are possible in Drosophila, we are able to identify and characterize mutants that fail to develop sensitization. RESULTS: We found that the Drosophila mutant inactive (iav) failed to become sensitized to cocaine. Mutant flies had reduced amounts of the trace amine tyramine in the brain because of reduced activity of the enzyme tyrosine decarboxylase (TDC), which converts tyrosine to tyramine. Furthermore, cocaine exposure induced TDC enzyme activity in a time-dependent manner that paralleled the development of behavioral sensitization. The sensitization failure of iav flies could be rescued by feeding the flies with tyramine; other biogenic amines or amine precursors did not have the same effect. CONCLUSIONS: These results indicate an essential role for tyramine in cocaine sensitization in Drosophila.  相似文献   

9.
10.
Epigenetic mechanisms, including histone acetylation and DNA methylation, have been widely implicated in hippocampal-dependent learning paradigms. Here, we have examined the role of epigenetic alterations in amygdala-dependent auditory Pavlovian fear conditioning and associated synaptic plasticity in the lateral nucleus of the amygdala (LA) in the rat. Using Western blotting, we first show that auditory fear conditioning is associated with an increase in histone H3 acetylation and DNMT3A expression in the LA, and that training-related alterations in histone acetylation and DNMT3A expression in the LA are downstream of ERK/MAPK signaling. Next, we show that intra-LA infusion of the histone deacetylase (HDAC) inhibitor TSA increases H3 acetylation and enhances fear memory consolidation; that is, long-term memory (LTM) is enhanced, while short-term memory (STM) is unaffected. Conversely, intra-LA infusion of the DNA methyltransferase (DNMT) inhibitor 5-AZA impairs fear memory consolidation. Further, intra-LA infusion of 5-AZA was observed to impair training-related increases in H3 acetylation, and pre-treatment with TSA was observed to rescue the memory consolidation deficit induced by 5-AZA. In our final series of experiments, we show that bath application of either 5-AZA or TSA to amygdala slices results in significant impairment or enhancement, respectively, of long-term potentiation (LTP) at both thalamic and cortical inputs to the LA. Further, the deficit in LTP following treatment with 5-AZA was observed to be rescued at both inputs by co-application of TSA. Collectively, these findings provide strong support that histone acetylation and DNA methylation work in concert to regulate memory consolidation of auditory fear conditioning and associated synaptic plasticity in the LA.  相似文献   

11.
In the present study, we used a mouse model of chronic intermittent ethanol (CIE) exposure to examine how CIE alters the plasticity of the medial prefrontal cortex (mPFC). In acute slices obtained either immediately or 1-week after the last episode of alcohol exposure, voltage-clamp recording of excitatory post-synaptic currents (EPSCs) in mPFC layer V pyramidal neurons revealed that CIE exposure resulted in an increase in the NMDA/AMPA current ratio. This increase appeared to result from a selective increase in the NMDA component of the EPSC. Consistent with this, Western blot analysis of the postsynaptic density fraction showed that while there was no change in expression of the AMPA GluR1 subunit, NMDA NR1 and NRB subunits were significantly increased in CIE exposed mice when examined immediately after the last episode of alcohol exposure. Unexpectedly, this increase in NR1 and NR2B was no longer observed after 1-week of withdrawal in spite of a persistent increase in synaptic NMDA currents. Analysis of spines on the basal dendrites of layer V neurons revealed that while the total density of spines was not altered, there was a selective increase in the density of mushroom-type spines following CIE exposure. Examination of NMDA-receptor mediated spike-timing-dependent plasticity (STDP) showed that CIE exposure was associated with altered expression of long-term potentiation (LTP). Lastly, behavioral studies using an attentional set-shifting task that depends upon the mPFC for optimal performance revealed deficits in cognitive flexibility in CIE exposed mice when tested up to 1-week after the last episode of alcohol exposure. Taken together, these observations are consistent with those in human alcoholics showing protracted deficits in executive function, and suggest these deficits may be associated with alterations in synaptic plasticity in the mPFC.  相似文献   

12.
13.
Serotonin (5-HT) receptors are classified into seven groups (5-HT1–7), comprising at least 14 structurally and pharmacologically distinct receptor subtypes. Pharmacological antagonism of ionotropic 5-HT3 receptors has been shown to modulate both behavioral and neurochemical aspects of the induction of sensitization to cocaine. It is not known, however, if specific molecular subunits of the 5-HT3 receptor influence the development of cocaine sensitization. To address this question, we studied the effects of acute and chronic intermittent cocaine administration in mice with a targeted deletion of the gene for the 5-HT3A-receptor subunit (5-HT3A−/−). 5-HT3A (−/−) mice showed blunted induction of cocaine-induced locomotor sensitization as compared with wild-type littermate controls. 5-HT3A (−/−) mice did not differ from wild-type littermate controls on measures of basal motor activity or response to acute cocaine treatment. Enhanced locomotor response to saline injection following cocaine sensitization was observed equally in 5-HT3A (−/−) and wild-type mice suggesting similar conditioned effects associated with chronic cocaine treatment. These data show a role for the 5-HT3A-receptor subunit in the induction of behavioral sensitization to cocaine and suggest that the 5-HT3A molecular subunit modulates neurobehavioral adaptations to cocaine, which may underlie aspects of addiction.  相似文献   

14.
Until the more recent advances made in molecular biology, attempts to link synaptic plasticity and learning have focused on using LTP as a marker of learning-induced synaptic plasticity, where one has expected to observe the same magnitude of change in synaptic strength as that observed with artificial stimulation. To a large extent this approach has been frustrated by the fact that it is generally assumed that the representation of the memory traces is distributed thoughout widespread networks of cells. By implication it is more likely that one would observe small distributed changes within a network; a formidable task to measure. In this review we describe how the advances in molecular biology give us both the tools to investigate the mechanisms of synaptic plasticity and to apply these to investigations of the underlying mechanisms in learning and the formation of memories that have until now remained out of our grasp.  相似文献   

15.
Ninan I  Arancio O 《Neuron》2004,42(1):129-141
Calcium/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional enzyme that is very critical for synaptic plasticity and memory formation. Although significant progress has been made in understanding the role of postsynaptic CaMKII in synaptic plasticity, very little is known about its presynaptic function during plasticity changes. Here we report that KN-93, a membrane-permeable CaMKII inhibitor, blocked glutamate-induced increases in the frequency of miniature excitatory postsynaptic currents (mEPSCs) and the number of presynaptic functional boutons in cultured hippocampal pyramidal neurons. In addition, presynaptic injection of the membrane-impermeable CaMKII inhibitor peptide 281-309 blocked synaptic plasticity induced by tetanus, glutamate, or NO/cGMP pathway activation as expressed by long-lasting increases in EPSC amplitude and functional presynaptic boutons. Presynaptic injection of CaMKII itself coupled with weak tetanus produced an immediate and long-lasting enhancement of EPSC amplitude. Thus, the present results conclusively prove that presynaptic CaMKII is essential for synaptic plasticity in cultured hippocampal neurons.  相似文献   

16.
Goto Y  Grace AA 《Neuron》2005,47(2):255-266
The prefrontal cortex and the hippocampus exhibit converging projections to the nucleus accumbens and have functional reciprocal connections via indirect pathways. As a result, information processing between these structures is likely to be bidirectional. Using evoked potential measures, we examined the interactions of these inputs on synaptic plasticity within the accumbens. Our results show that the direction of information flow between the prefrontal cortex and limbic structures determines the synaptic plasticity that these inputs exhibit within the accumbens. Moreover, this synaptic plasticity at hippocampal and prefrontal inputs selectively involves dopamine D1 and D2 activation or inactivation, respectively. Repeated cocaine administration disrupted this synaptic plasticity at hippocampal and prefrontal cortical inputs and goal-directed behavior in the spatial maze task. Thus, interactions of limbic-prefrontal cortical synaptic plasticity and its dysfunction within the accumbens could underlie complex information processing deficits observed in individuals following psychostimulant administration.  相似文献   

17.
18.
Genetic malleability and amenability to behavioral assays make Drosophila an attractive model for dissecting the molecular mechanisms of complex behaviors, such as learning and memory. At a cellular level, Drosophila has contributed a wealth of information on the mechanisms regulating membrane excitability and synapse formation, function, and plasticity. Until recently, however, these studies have relied almost exclusively on analyses of the peripheral neuromuscular junction, with a smaller body of work on neurons grown in primary culture. These experimental systems are, by themselves, clearly inadequate for assessing neuronal function at the many levels necessary for an understanding of behavioral regulation. The pressing need is for access to physiologically relevant neuronal circuits as they develop and are modified throughout life. In the past few years, progress has been made in developing experimental approaches to examine functional properties of identified populations of Drosophila central neurons, both in cell culture and in vivo. This review focuses on these exciting developments, which promise to rapidly expand the frontiers of functional cellular neurobiology studies in Drosophila. We discuss here the technical advances that have begun to reveal the excitability and synaptic transmission properties of central neurons in flies, and discuss how these studies promise to substantially increase our understanding of neuronal mechanisms underlying behavioral plasticity.  相似文献   

19.
Arc/Arg3.1 is robustly induced by plasticity-producing stimulation and specifically targeted to stimulated synaptic areas. To investigate the role of Arc/Arg3.1 in synaptic plasticity and learning and memory, we generated Arc/Arg3.1 knockout mice. These animals fail to form long-lasting memories for implicit and explicit learning tasks, despite intact short-term memory. Moreover, they exhibit a biphasic alteration of hippocampal long-term potentiation in the dentate gyrus and area CA1 with an enhanced early and absent late phase. In addition, long-term depression is significantly impaired. Together, these results demonstrate a critical role for Arc/Arg3.1 in the consolidation of enduring synaptic plasticity and memory storage.  相似文献   

20.
The role of the cyclic nucleotide‐gated (CNG) channel CNGA3 is well established in cone photoreceptors and guanylyl cyclase‐D‐expressing olfactory neurons. To assess a potential function of CNGA3 in the mouse amygdala and hippocampus, we examined synaptic plasticity and performed a comparative analysis of spatial learning, fear conditioning and step‐down avoidance in wild‐type mice and CNGA3 null mutants (CNGA3?/?). CNGA3?/? mice showed normal basal synaptic transmission in the amygdala and the hippocampus. However, cornu Ammonis (CA1) hippocampal long‐term potentiation (LTP) induced by a strong tetanus was significantly enhanced in CNGA3?/? mice as compared with their wild‐type littermates. Unlike in the hippocampus, LTP was not significantly altered in the amygdala of CNGA3?/? mice. Enhanced hippocampal LTP did not coincide with changes in hippocampus‐dependent learning, as both wild‐type and mutant mice showed a similar performance in water maze tasks and contextual fear conditioning, except for a trend toward higher step‐down latencies in a passive avoidance task. In contrast, CNGA3?/? mice showed markedly reduced freezing to the conditioned tone in the amygdala‐dependent cued fear conditioning task. In conclusion, our study adds a new entry on the list of physiological functions of the CNGA3 channel. Despite the dissociation between physiological and behavioral parameters, our data describe a so far unrecognized role of CNGA3 in modulation of hippocampal plasticity and amydgala‐dependent fear memory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号