首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurotrophins signal through two different classes of receptors, members of the trk family of receptor tyrosine kinases, and p75 neurotrophin receptor (p75NTR), a member of the tumor necrosis factor receptor family. While neurotrophin binding to trks results in, among other things, increased cell survival, p75NTR has enigmatically been implicated in promoting both survival and cell death. Which of these two signals p75NTR imparts depends on the specific cellular context. Xenopus laevis is an excellent system in which to study p75NTR function in vivo because of its amenability to experimental manipulation. We therefore cloned partial cDNAs of two p75NTR genes from Xenopus, which we have termed p75NTRa and p75NTRb. We then cloned two different cDNAs, both of which encompass the full coding region of p75NTRa. Early in development both p75NTRa and p75NTRb are expressed in developing cranial ganglia and presumptive spinal sensory neurons, similar to what is observed in other species. Later, p75NTRa expression largely continues to parallel p75NTR expression in other species. However, Xenopus p75NTRa is additionally expressed in the neuroepithelium of the anterior telencephalon, all layers of the retina including the photoreceptor layer, and functioning axial skeletal muscle. Finally, misexpression of full length p75NTR and each of two truncated mutants in developing retina reveal that p75NTR probably signals for cell survival in this system. This result contrasts with the reported role of p75NTR in developing retinae of other species, and the possible implications of this difference are discussed. © 2001 John Wiley & Sons, Inc. J Neurobiol 49: 79–98, 2001  相似文献   

2.
Xenopus laevis larvae with an elevated expression of c-src were generated by mating a transgenic X. laevis male frog carrying proviral Rous sarcoma virus (RSV) long terminal repeat (LTR) and most of the pol gene sequences in its sperm DNA and a normal X. laevis female frog. Offspring (15–20%) with a higher dosage of c-Src, detected in disorganized myotomal musculature and in cerebral and spinal neuronal cells by immunohistochemical analysis, developed abnormally, with edemas (in most cases), head deformities, and eye and axial system defects. In the remaining embryos, a small increase in c-src expression seemed to be compatible with normal embryogenesis. The dosage of c-Src correlated with the dosage of RSV LTR integrated in frog DNA as revealed by Southern and polymerase chain reaction (PCR) analyses. Authenticity of the integrated RSV LTR including enhancer sequence was proved by sequencing. Probing of total RNA from aberrant larvae demonstrated several times higher dosage of c-src mRNA in their tissues than in control tadpoles. We hypothesize that the integrated RSV regulatory sequences can stimulate the expression of c-src proto-oncogene of X. laevis above a treshold that interferes with the early developmental program of frog embryos. Mol. Reprod. Dev. 50:410–419, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Xenopus is a well-characterized model system for the investigation of biological processes at the molecular, cellular, and developmental level. The successful application of a rapid and reliable method for transgenic approaches in Xenopus has led to renewed interest in this system. We have explored the applicability of tetracycline-regulated gene expression, first described by Gossen and Bujard in 1992, to the Xenopus system. By optimizing conditions, tetracycline repressor induced expression of a luciferase reporter gene was readily and reproducibly achieved in both the Xenopus oocyte and developing embryo. This high level of expression was effectively abrogated by addition of low levels of tetracycline. The significance of this newly defined system for studies of chromatin dynamics and developmental processes is discussed.  相似文献   

4.
5.
The levels of genomic DNA methylation in vertebrate species display a wide range of developmental dynamics. Here, we show that in contrast to mice, the paternal genome of the amphibian, Xenopus laevis, is not subjected to active demethylation of 5-methyl cytosine immediately after fertilization. High levels of methylation in the DNA of both oocyte and sperm are maintained in the early embryo but progressively decline during the cleavage stages. As a result, the Xenopus genome has its lowest methylation content at the midblastula transition (MBT) and during subsequent gastrulation. Between blastula and gastrula stages, we detect a loss of methylation at individual Xenopus gene promoters (TFIIIA, Xbra, and c-Myc II) that are activated at MBT. No changes are observed in the methylation patterns of repeated sequences, genes that are inactive at MBT, or in the coding regions of individual genes. In embryos that are depleted of the maintenance methyltransferase enzyme (xDnmt1), these developmentally programmed changes in promoter methylation are disrupted, which may account for the altered patterns of gene expression that occur in these embryos. Our results suggest that DNA methylation has a role in regulating the timing of gene activation at MBT in Xenopus laevis embryos.  相似文献   

6.
7.
Now that transgenic strains of Xenopus laevis and X. tropicalis can be generated efficiently and with genomic sequence resources available for X. tropicalis, early amphibian development can be studied using integrated biochemical and genetic approaches. However, housing large numbers of animals generated during genetic screens or produced as novel transgenic lines presents a considerable challenge. We describe a method for cryopreserving Xenopus sperm that should facilitate low maintenance, long-term storage of male gametes. By optimising the cryoprotectant, the rates of cooling and thawing, and conditions for fertilisation, sperm from the equivalent of one-eighth of a X. laevis testis or of two X. tropicalis testes have been cryopreserved and used to fertilise eggs of both species after thawing. Sperm undergo a substantial loss of viability during a freeze-thaw cycle, but sufficient survive to fertilise eggs. Gametes of mutagenised frogs are being stored in connection with a screen for developmental mutations.  相似文献   

8.
9.
The mRNA coding for vitellogenin, the yolk protein precursor, has been isolated from the liver of estrogen-stimulated Xenopus laevis. The mRNA has a size of 6.3 kilobases (kb). Optimal conditions were investigated for the synthesis of long complementary DNA (cDNA, referring to DNA synthesized in vitro) copies of the mRNA. Temperature, salt concentration, and enzyme-to-RNA ratio were important factors. Double-stranded cDNA with an average size of 2 to 3 kb was inserted into the vector pMB9 by the poly(dA:dT) method, and the recombinant plasmids were amplified in E. coli. Twenty-one clones with vitellogenin inserts ranging from 1 to 3.7 kb were studied. The regions in the RNA from which these clones had been derived were mapped by R-loop analysis in the electron microscope and by hybridization of the cloned DNAs with specific fractions of mRNA. Slightly more than half of the clones were derived from the 3′-terminal portions of the mRNA while the remaining clones are located internally.  相似文献   

10.
11.
The activities of glycosyltransferases and sialidases, together with the ganglioside content and distribution, have been extensively studied in mammals, while the informations on tissues of other animals, including amphibian, are scarce. In this paper we present data on the activities of SAT-1, SAT-2, SAT-4, SAT-5, GlcNAcT-1, GalNAcT-1, GalT-6, and sialidases studied in Xenopus laevis embryos at different stages of development. The highest activity was found at days 4 and 5 of embryogenesis for glycosyltransferases and sialidases respectively; a tentative correlation between the in vitro activity of these enzymes and the content of neutral and acidic glycolipids is discussed. (Mol Cell Biochem 166: 117-124, 1997)  相似文献   

12.
13.
We have successfully isolated a novel anoctamin (xANO2), Ca2+-activated chloride channel (ANO1, TMEM16A), from Xenopus laevis. The cDNA sequence was determined to belong to the anoctamin family by comparison with the xTMEM16A sequence in a previous report. Full length cDNA synthesis was performed by repeating 5′- and 3′-rapid amplification of cDNA end (RACE). We successfully completed the entire cDNA sequence and transiently named this sequence xANO2. The xANO2 cDNA is 3884 base pair (bp) long and codes 980 amino acid (aa) proteins. According to an aa homology search using the Basic Local Alignment Search Tool (BLAST), xANO2 showed an overall identity of 92% to xTMEM16A (xANO1) independently sub-cloned in our laboratory. A primary sequence of xANO2 revealed typical characteristics of transmembrane proteins. In tissue distribution analysis, the gene products of anoctamins were ubiquitously detected by real-time PCR (RT-PCR). The expression profiles of each anoctamin were different among brain, oocytes, and digestive organs with relatively weak expression. To clarify the anoctamin activity, physiological studies were performed using the whole cell patch-clamp technique with HEK293T cells, enhanced green fluorescent protein (EGFP), and expression vectors carrying anoctamins. Characteristics typical of voltage-dependent chloride currents were detected in cells expressing both xANO2 and xTMEM16A but not with EGFP alone. Sensitive reactions to the anion channel blocker niflumic acid (NFA) were also revealed. Considering these results, xANO2 was regarded as a new TMEM16A belonging to the Xenopus anoctamin family.  相似文献   

14.
The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs ofXenopus inv and mouse inv proteins may regulate their function in different ways.  相似文献   

15.
Background information. pes1 (pescadillo homologue 1) and ppan (Peter Pan) are multifunctional proteins involved in ribosome biogenesis, cell proliferation, apoptosis, cell migration and regulation of gene expression. Both proteins are required for early neural development in Xenopus laevis, as previously demonstrated. Results. We show that the expression of both genes in the developing pronephros depends on wnt4 and fzd3 (frizzled homologue 3) function. Loss of pes1 or ppan by MO (morpholino oligonucleotide)‐based knockdown approaches resulted in strong malformations during pronephric tubule formation. Defects were already notable during specification of pronephric progenitor cells, as shown by lhx1 expression. Moreover, we demonstrated that Xenopus pes1 and ppan interact physically and functionally and that pes1 and ppan can cross‐rescue the loss of function phenotype of one another. Interference with rRNA synthesis, however, did not result in a similar early pronephros phenotype. Conclusion. These results demonstrate that pes1 and ppan are required for Xenopus pronephros development and indicate that their function in the pronephros is independent of their role in ribosome biosynthesis.  相似文献   

16.
Identification and preliminary function study of Xenopus laevis DRR1 gene   总被引:2,自引:0,他引:2  
Xenopus laevis has recently been determined as a novel study platform of gene function. In this study, we cloned Xenopus DRR1 (xDRR1), which is homologous to human down-regulated in renal carcinoma (DRR1) gene. Bioinformatics analysis for DRR1 indicated that xDRR1 shared 74% identity with human DRR1 and 66% with mouse DRR1, and the phlogenetic tree of DRR1 protein was summarized. The xDRR1 gene locates in nuclei determined by transfecting A549 cells with the recombinant plasmid pEGFP-N1/xDRR1. RT-PCR analysis revealed that xDRR1 gene was expressed in all stages of early embryo development and all kinds of detected tissues, and whole-mount in situ hybridization showed xDRR1 was mainly present along ectoderm and mesoderm. Furthermore, xDRR1 expression could suppress A549 cell growth by transfecting with plasmid pcDNA3.1(+)/xDRR1. xDRR1 probably plays important roles involving in cell growth regulation and Xenopus embryo development.  相似文献   

17.
The vertebrate Otx gene family is related to otd, a gene contributing to head development in Drosophila. In Xenopus, Xotx1, Xotx2, and Xotx4 have already been isolated and analyzed. Here the cloning, developmental expression and functions of the additional Otx Xenopus gene, Xotx5 are reported. This latter gene shows a greater degree of homology to Xotx2 than Xotx1 and Xotx4. Xotx5 was initially expressed in Spemann's organizer and later in the anterior region. Ectopic expression of Xotx5 had similar effects to other Xotx genes in impairing trunk and tail development, and especially similar effects to Xotx2 in causing secondary cement glands. Taken together, these findings suggest that Xotx5 stimulates the formation of the anterior regions and represses the formation of posterior structures similar to Xotx2.  相似文献   

18.
In Xenopus laevis frogs, sex differences in adult laryngeal synapses contribute to sex differences in vocal behavior. This study explores the development of sex differences in types of neuromuscular synapses and the development and hormone regulation of sex differences in transmitter release. Synapses in the juvenile larynx have characteristics not found in adults: juvenile muscle fibers can produce subthreshold or suprathreshold potentials in response to the same strength of nerve stimulation and can also produce multiple spikes to a single nerve stimulus. Juvenile laryngeal muscle also contains the same synapse types (I, II, and III) as are found in adult laryngeal muscle. The distribution of laryngeal synapse types in juveniles is less sexually dimorphic than the distribution in adults. Analysis of quantal content indicates that laryngeal synapses characteristically release low amounts of transmitter prior to sexual differentiation. Quantal content values from male and female juveniles are similar to values for adult males and are lower than values for adult females. When juveniles are gonadectomized and treated with exogenous estrogen, quantal content values increase significantly, suggesting that this hormone may increase transmitter release at laryngeal synapses during development. Gonadectomy alone does not affect quantal content of laryngeal synapses in either sex. Androgen treatment decreases quantal content in juvenile females but not males; the effect is opposite to and smaller than that of estrogen. Thus, muscle fiber responses to nerve stimulation and transmitter release are not sexually dimorphic in juvenile larynges. Transmitter release is strengthened, or feminized, by the administration of estradiol, an ovarian steroid hormone. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
We have recently identified and cloned the cDNA of a new member of the glucose transporter family that has been designated GLUT12. GLUT12 possesses the structural features critical to facilitative transport of glucose but the key to understanding the possible physiological roles of this novel protein requires analysis of functional glucose transport. In the current study, we have utilized the Xenopus laevis oocyte expression system to assay transport of the glucose analog 2-deoxy-D-glucose and characterize the glucose transport properties and hexose affinities of GLUT12. Our results demonstrate that GLUT12 facilitates transport of glucose with an apparent preferential substrate affinity for glucose over other hexoses assayed. The results are significant to understanding the potential role and importance of GLUT12 in insulin-sensitive tissues and also cells with high glucose utilization such as cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号