首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The volatile-mediated impact of bacteria on plant growth is well documented, and contrasting effects have been reported ranging from 6-fold plant promotion to plant killing. However, very little is known about the identity of the compounds responsible for these effects or the mechanisms involved in plant growth alteration. We hypothesized that hydrogen cyanide (HCN) is a major factor accounting for the observed volatile-mediated toxicity of some strains. Using a collection of environmental and clinical strains differing in cyanogenesis, as well as a defined HCN-negative mutant, we demonstrate that bacterial HCN accounts to a significant extent for the deleterious effects observed when growing Arabidopsis thaliana in the presence of certain bacterial volatiles. The environmental strain Pseudomonas aeruginosa PUPa3 was less cyanogenic and less plant growth inhibiting than the clinical strain P. aeruginosa PAO1. Quorum-sensing deficient mutants of C. violaceum CV0, P. aeruginosa PAO1, and P. aeruginosa PUPa3 showed not only diminished HCN production but also strongly reduced volatile-mediated phytotoxicity. The double treatment of providing plants with reactive oxygen species scavenging compounds and overexpressing the alternative oxidase AOX1a led to a significant reduction of volatile-mediated toxicity. This indicates that oxidative stress is a key process in the physiological changes leading to plant death upon exposure to toxic bacterial volatiles.  相似文献   

2.
The properties of new virulent bacteriophage TL of Pseudomonas aeruginosa belonging to the family Podoviridae (genome size of 46 kb) were investigated. This bacteriophage is capable of lysogenizing the bacterial lawn in halo zones around negative colonies (NC) of other bacteriophages. TL forms large NC, that are hardly distinguishable on the lawn of P. aeruginisa PAO1. At the same time, on the lawns of some phage-resistant PAO1 mutants, as well as on those produced by a number of clinical isolates, TL forms more transparent NC. It is suggested that more effective growth of the bacteriophage TL NC is associated with the differences in outer lipopolysaccharide (LPS) layer of the cell walls of different bacterial strains, as well as of the bacteria inside and outside of the halos. This TL property was used to optimize selection of bacteriophages producing halos around NC on the lawn of P. aeruginosa PAO1. As a result, a group of bacteriophages differing in the patterns of interaction between their halos and TL bacteriophage, as well as in some characters was identified. Taking into consideration the importance of cell-surfaced structures of P. aeruginosa in manifestation of virulence and pathogenicity, possible utilization of specific phage enzymes, polysacchadide depolymerases, for more effective treatment of P. aeruginosa infections is discussed.  相似文献   

3.
Natriuretic peptides of various forms are present in animals and plants, and display structural similarities to cyclic antibacterial peptides. Pretreatment of Pseudomonas aeruginosa PAO1 with brain natriuretic peptide (BNP) or C-type natriuretic peptide (CNP) increases bacterium-induced glial cell necrosis. In eukaryotes, natriuretic peptides act through receptors coupled to cyclases. We observed that stable analogs of cAMP (dibutyryl cAMP) and cGMP (8-bromo-cGMP) mimicked the effect of brain natriuretic peptide and CNP on bacteria. Further evidence for the involvement of bacterial cyclases in the regulation of P. aeruginosa PAO1 cytotoxicity by natriuretic peptides is provided by the observed doubling of intrabacterial cAMP concentration after exposure to CNP. Lipopolysaccharide (LPS) extracted from P. aeruginosa PAO1 treated with both dibutyryl cAMP and 8-bromo-cGMP induces higher levels of necrosis than LPS extracted from untreated bacteria. Capillary electrophoresis and MALDI-TOF MS analysis have shown that differences in LPS toxicity are due to specific differences in the structure of the macromolecule. Using a strain deleted in the vfr gene, we showed that the Vfr protein is essential for the effect of natriuretic peptides on P. aeruginosa PAO1 virulence. These data support the hypothesis that P. aeruginosa has a cyclic nucleotide-dependent natriuretic peptide sensor system that may affect virulence by activating the expression of Vfr and LPS biosynthesis.  相似文献   

4.
Polar flagellated Pseudomonas aeruginosa PAO1 demonstrated extensive spreading growth in 2 days on 1.5% agar medium. Such spreading growth of P. aeruginosa PAO1 strains was absent on Luria-Bertani 1.5% agar medium, but remarkable on Davis minimal synthetic agar medium (especially that containing 0.8% sodium citrate and 1.5% Eiken agar) under aerobic 37 degrees C conditions. Analyses using isogenic mutants and complementation transformants showed that bacterial flagella and rhamnolipid contributed to the surface-spreading behavior. On the other hand, a type IV pilus-deficient pilA mutant did not lose the spreading growth activity. Flagella staining of PAO1 T cells from the frontal edge of a spreading colony showed unipolar and normal-sized rods with one or two flagella. Thus, the polar flagellate P. aeruginosa PAO1 T appears to swarm on high-agar medium by producing biosurfactant rhamnolipid and without differentiation into an elongated peritrichous hyperflagellate.  相似文献   

5.
It was previously shown that the chemotaxis gene cluster 1 (cheYZABW) was required for chemotaxis. In this study, the involvement of the same cluster in aerotaxis is described and two transducer genes for aerotaxis are identified. Aerotaxis assays of a number of deletion-insertion mutants of Pseudomonas aeruginosa PAO1 revealed that the chemotaxis gene cluster 1 and cheR are required for aerotaxis. Mutant strains which contained deletions in the methyl-accepting chemotaxis protein-like genes tlpC and tlpG showed decreased aerotaxis. A double mutant deficient in tlpC and tlpG was negative for aerotaxis. TlpC has 45% amino acid identity with the Escherichia coli aerotactic transducer Aer. The TlpG protein has a predicted C-terminal segment with 89% identity to the highly conserved domain of the E. coli serine chemoreceptor Tsr. A hydropathy plot of TlpG indicated that hydrophobic membrane-spanning regions are missing in TlpG. A PAS motif was found in the N-terminal domains of TlpC and TlpG. On this basis, the tlpC and tlpG genes were renamed aer and aer-2, respectively. No significant homology other than the PAS motif was detected in the N-terminal domains between Aer and Aer-2.  相似文献   

6.
The TOL plasmid originally isolated in Pseudomonas putida (arvilla) mt-2 was transmissible to strains of the fluorescens group of Pseudomonas, i.e., P. putida, P. fluorescens, and P. aeruginosa, except for a strain of P. aeruginosa, strain PAO. The same strain, however, could accept the plasmid when its restriction and modification abilities were lost by mutations or by growing at high temperature. In addition, the transmissibility of the TOL plasmid from strain PAO to P. putida was low when the plasmid was modified by the donor. By using P. aeruginosa PAO carrying the TOL plasmid, the stability and genetic expression of the plasmid as well as its effect on the host cell growth were examined. Thus the self-maintenance of the plasmid was found to be thermosensitive. Furthermore, the TOL plasmid inhibited the growth of strain PAO at high temperature, accompanied by the formation of some filamentous cells. These thermosensitive properties of the TOL plasmid were host dependent and not exhibited in another strain of P. aeruginosa.  相似文献   

7.
The lipoprotein I gene (oprI) of Pseudomonas aeruginosa PAO1 was cloned and sequenced. A high degree of homology was found between our cloned PAO1 gene sequence and two published oprI sequences. Specific oligonucleotides were designed to amplify the oprI gene by the polymerase chain reaction (PCR). The potential of either the complete gene sequence or the specific oligonucleotide primers as a tool for rapid strain identification was directly assessed against bacterial colonies by PCR or against purified genomic DNA by Southern blot analysis, using a number of representative strains within the Pseudomonadaceae. The oprI gene was found to be well conserved within RNA group I.  相似文献   

8.
Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self-generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self-assembly process and several distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus-independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl polysaccharides are also essential for subpopulation interactions and macrocolony formation in the later stages of P. aeruginosa PAO1 biofilm formation. Pel and Psl polysaccharides have different impacts on Pseudomonas quinolone signal-mediated extracellular DNA release in P. aeruginosa PAO1 biofilms. Psl polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.  相似文献   

9.
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that is one of the most refractory to therapy when it forms biofilms in the airways of cystic fibrosis patients. To date, studies regarding the production of an immunogenic and protective antigen to inhibit biofilm formation by P. aeruginosa have been superficial. The previously uncharacterized outer membrane protein (OMP) Opr86 (PA3648) of P. aeruginosa is a member of the Omp85 family, of which homologs have been found in all gram-negative bacteria. Here we verify the availability of Opr86 as a protective antigen to inhibit biofilm formation by P. aeruginosa PAO1 and several other isolates. A mutant was constructed in which Opr86 expression could be switched on or off through a tac promoter-controlled opr86 gene. The result, consistent with previous Omp85 studies, showed that Opr86 is essential for viability and plays a role in OMP assembly. Depletion of Opr86 resulted in streptococci-like morphological changes and liberation of excess membrane vesicles. A polyclonal antibody against Opr86 which showed reactivity to PAO1 cells was obtained. The antibody inhibited biofilm formation by PAO1 and the other clinical strains tested. Closer examination of early attachment revealed that cells treated with the antibody were unable to attach to the surface. Our data suggest that Opr86 is a critical OMP and a potential candidate as a protective antigen against biofilm formation by P. aeruginosa.  相似文献   

10.
Microbiologically induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has shown its potential in remediation of a wide range of structural damages including concrete cracks. In this study, genetically engineered microorganisms, capable of producing extracellular polymeric substances (EPSs) as well as inducing MICCP, were developed based on the assumption that the complex of inorganic CaCO(3) and organic EPS would provide a stronger matrix than MICCP alone as biosealant. In order to develop a recombinant biosealant microorganism, the entire Sporosarcina pasteurii urease gene sequences including ureA, ureB, ureC, ureD, ureE, ureF, and ureG from plasmid pBU11 were sub-cloned into the shuttle vector, pUCP18. The newly constructed plasmid, pUBU1, was transformed into two Pseudomonas aeruginosa strains, 8821 and PAO1, to develop recombinants capable of inducing calcite precipitation in addition to their own ability to produce EPS. Nickel-dependent urease activities were expressed from the recombinant P. aeruginosa 8821 (pUBU1) and P. aeruginosa PAO1 (pUBU1), at 99.4% and 60.9% of the S. pasteurii urease activity, respectively, in a medium containing 2mM NiCl(2). No urease activities were detected from the wild type P. aeruginosa 8821 and P. aeruginosa PAO1 under the same growth conditions. Recombinant Pseudomonas strains induced CaCO(3) precipitation at a comparable rate as S. pasteurii and scanning electron microscopy evidenced the complex of CaCO(3) crystals and EPS layers surrounding the cells. The engineered strains produced in this study are expected to serve as a valuable reference to future biosealants that could be applied in the environment. However, the pathogenic potential of P. aeruginosa, used here only as a model system to show the proof of principle, prevents the use of this recombinant organism as a biosealant. In practical applications, other recombinant organisms should be used.  相似文献   

11.
Purification of the ferripyoverdine reductase from Pseudomonas aeruginosa, strain PAO1, lead to the isolation of a soluble protein of M(r) 27,000-28,000, as determined by HPLC sieving filtration and by denaturating gel electrophoresis. In the presence of NADH as the reductant, ferripyoverdine as the iron substrate, ferrozine as an iron(II)-trapping agent and FMN, this protein displayed an iron-reductase activity which resulted in the formation of ferrozine-iron(II) complex, providing that the enzymic assay was run under strict anaerobiosis. FMN was absolutely required for the activity to occur, but the lack of a visible spectrum and the lack of fluorescence for the protein in solution suggested that ferripyoverdine reductase is not a flavin-containing protein and that covalently bound FMN is not a prerequisite for the enzymatic reaction. A search of ferripyoverdine reductase by immunological detection amongst the different cellular compartments of P. aeruginosa lead to the conclusion that the soluble enzyme, which represented more than 95% of the total cellular enzyme, is not located in the periplasm but specifically in the cytoplasm. A strongly immunoreacting material, corresponding to a protein with identical M(r) as the ferripyoverdine reductase of P. aeruginosa PAO1, was detected in all the eighteen fluorescent pseudomonad strains belonging to the P. aeruginosa, P. fluorescens, P. putida and P. chlororaphis species, as well as in P. stutzeri, a non-fluorescent species, suggesting that the enzyme acting as a ferripyoverdine reductase in P. aeruginosa PAO1 is ubiquitous among the Pseudomonas.  相似文献   

12.
13.
The extracellularly secreted endopeptidase elastase (LasB) is regarded as an important virulence factor of Pseudomonas aeruginosa. It has also been implicated in the processing of LasA which enhances elastolytic activity of LasB. In order to investigate the role of LasB in virulence and LasA processing, a LasB-negative mutant, PAO1E, was constructed by insertional mutagenesis of the LasB structural gene, lasB, in P. aeruginosa PAO. An internal 636 bp lasB fragment of the plasmid pRB1803 was ligated into a derivative of the mobilization vector pSUP201-1. The resulting plasmid, pBRMOB-LasB, was transformed into Escherichia coli and transferred by filter matings to the LasB-positive P. aeruginosa strain, PAO1. Plasmid integration in the lasB site of the chromosome was confirmed by Southern blot analysis. Radioimmunoassay and immunoblotting of PAO1E supernatant fluids yielded no detectable LasB (less than 1 ng ml-1 LasB). The absence of LasB in PAO1E was further proven by the inability of its culture supernatant fluid to cleave transferrin or rabbit immunoglobulin G (IgG) after a 72 h incubation. The residual proteolytic activity of PAO1E culture supernatant fluid was attributed to alkaline proteinase (Apr), since it was totally inhibited by specific antibodies against Apr. Residual elastolytic activity in culture supernatant fluid of PAO1E was due to the LasA fragment and to the combined action of the LasA fragment with Apr on elastin. The sizes of purified LasA from PAO1 and PAO1E were identical (22 kDa). These results show that, besides LasB and the LasA fragment, Apr may also act on elastin in the presence of the LasA fragment and that the proteolytic processing of LasA in P. aeruginosa is independent of LasB.  相似文献   

14.
The aim of this study was to isolate microorganisms capable of decolourizing and degrading anaerobically treated distillery spent wash. A bacterial consortium DMC comprising of three bacterial cultures was selected on the basis of rapid effluent decolourization and degradation, which exhibited 67 +/- 2% decolourization within 24 h and 51 +/- 2% chemical oxygen demand reduction within 72 h when incubated at 37 degrees C under static condition in effluent supplemented with 0.5% glucose, 0.1% KH(2)PO(4), 0.05% KCl and 0.05% MgSO(4) x 7H(2)O. Addition of organic or inorganic nitrogen sources did not support decolourization. The cultures were identified as Pseudomonas aeruginosa PAO1, Stenotrophomonas maltophila and Proteus mirabilis by the 16S rDNA analysis.  相似文献   

15.
细菌致病因子是细菌毒性的重要部分。Gac系统是细菌的一种全局性调控系统,调控着细菌多种毒性因子的产生。在前期研究中,首次从武汉东湖水域分离得到一株具备高产铁载体能力的革兰氏阴性菌--东湖假单胞菌(Pseudomonas donghuensis)HYS菌株。为了探索Gac系统对于HYS毒性的影响,首先通过氨基酸序列BlastP比对以定位HYS中Gac系统GacS蛋白的位置,经生物信息学分析,确定了HYS中存在Gac系统;再将来源于P. donghuensis HYS和铜绿假单胞菌(P. aeruginosa)PAO1的gacS片段分别通过基因克隆回补至HYS的gacS基因敲除株ΔgacS中,并将获得的菌株喂食秀丽隐杆线虫,通过比较线虫的生存数量和生存天数来判断菌株毒性的强弱。结果表明,ΔgacS菌株毒性明显减弱,而2株回补菌株对线虫的毒性均有不同程度的恢复,说明HYS中的Gac系统参与了毒性调控途径,且P. aeruginosa PAO1的gacS片段也能在HYS中发挥一定的毒性调控作用。为了进一步探索ΔgacS菌株的减毒特性是否与HYS中毒力因子的丧失有关,利用脱脂牛奶平板检测菌株胞外蛋白酶的活性,并利用泳动运动平板、群集运动平板、蹭行运动平板检测菌株的运动能力,同时还对脂多糖、氢氰酸等代谢产物进行了检测。结果表明,相比于HYS,ΔgacS菌株的蛋白酶分泌完全消失,且3种运动能力相比HYS均显著下降(P<0.05)。此外,ΔgacS菌株的胞外脂多糖与氢氰酸的产量相比野生型HYS菌株也有不同程度的下降。而这些毒力因子表型在回补菌株ΔgacS/pBBR2-gacSHYS中均可恢复至野生型水平,且回补PAO1的同源gacS基因甚至可在一定程度上回补gacS的正调控毒性物质的功能。研究表明,潜在的动物致病菌--P. donghuensis HYS通过Gac系统正调控产生毒性因子,从而发挥对秀丽隐杆线虫的致死效应,这为将来生物体抵御HYS感染提供了理论基础。  相似文献   

16.
17.
Pseudomonas aeruginosa is an opportunistic pathogen that forms biofilms on tissues and other surfaces. We characterized the interaction of purified human neutrophils with P. aeruginosa, growing in biofilms, with regard to morphology, oxygen consumption, phagocytosis, and degranulation. Scanning electron and confocal laser microscopy indicated that the neutrophils retained a round, unpolarized, unstimulated morphology when exposed to P. aeruginosa PAO1 biofilms. However, transmission electron microscopy demonstrated that neutrophils, although rounded on their dorsal side, were phagocytically active with moderate membrane rearrangement on their bacteria-adjacent surfaces. The settled neutrophils lacked pseudopodia, were impaired in motility, and were enveloped by a cloud of planktonic bacteria released from the biofilms. The oxygen consumption of the biofilm/neutrophil system increased 6- and 8-fold over that of the biofilm alone or unstimulated neutrophils in suspension, respectively. H(2)O(2) accumulation was transient, reaching a maximal measured value of 1 micro M. Following contact, stimulated degranulation was 20-40% (myeloperoxidase, beta-glucuronidase) and 40-80% (lactoferrin) of maximal when compared with formylmethionylleucylphenylalanine plus cytochalasin B stimulation. In summary, after neutrophils settle on P. aeruginosa biofilms, they become phagocytically engorged, partially degranulated, immobilized, and rounded. The settling also causes an increase in oxygen consumption of the system, apparently resulting from a combination of a bacterial respiration and escape response and the neutrophil respiratory burst but with little increase in the soluble concentration of H(2)O(2). Thus, host defense becomes compromised as biofilm bacteria escape while neutrophils remain immobilized with a diminished oxidative potential.  相似文献   

18.
Pseudomonas aeruginosa chronic lung infections are the major cause of morbidity and mortality in cystic fibrosis (CF) patients. The P. aeruginosa strains PAO1 and PA14 were compared with the Liverpool epidemic strain LESB58 to assess in vivo growth, infection kinetics, and bacterial persistence and localization within tissues in a rat model of chronic lung infection. The three P. aeruginosa strains demonstrated similar growth curves in vivo but differences in tissue distribution. The LESB58 strain persisted in the bronchial lumen, while the PAO1 and PA14 strains were found localized in the alveolar regions and grew as macrocolonies after day 7 postinfection. Bacterial strains were compared for swimming and twitching motility and for the production of biofilm. The P. aeruginosa LESB58 strain produced more biofilm than PAO1 and PA14. Competitive index (CI) analysis of PAO1, PA14, and LESB58 in vivo indicated CI values of 0.002, 0.0002, and 0.14 between PAO1-PA14, PAO1-LESB58, and LESB58-PA14, respectively. CI analysis comparing the in vivo growth of the PAO1 DeltaPA5441 mutant and four PA14 surface attachment-defective (sad) mutants gave CI values 10 to 1,000 times lower in competitions with their respective wild-type strains PAO1 and PA14. P. aeruginosa strains studied in the rat model of chronic lung infection demonstrated similar in vivo growth but differences in virulence as shown with a competitive in vivo assay. These differences were further confirmed with biofilm and motility in vitro assays, where strain LESB58 produced more biofilm but had less capacity for motility than PAO1 and PA14.  相似文献   

19.
Flavodoxin (Fld) is a bacterial electron-transfer protein that possesses flavin mononucleotide as a prosthetic group. In the genomes of the Pseudomonas species, the mioC gene is the sole gene, annotated Fld, but its function remains unclear. In this study, phenotype microarray analysis was performed using the wild-type and mioC mutant of pathogenic Pseudomonas aeruginosa PAO1. Our results showed that the mioC mutant is very resistant to oxidative stress. Different antibiotics and metals worked differently on the sensitivity of the mutant. Other pleiotropic effects of mutation in the mioC gene, such as biofilm formation, aggregation ability, motility and colony morphology, were observed under iron stress conditions. Most of the phenotypic and physiological changes could be recovered in the wild type by complementation. Mutation of the mioC gene also influenced the production of pigments. The mioC mutant and mioC over-expressed complementation cells, over-produced pyocyanin and pyoverdine, respectively. Various secreted chemicals were also changed in the mutant, which was confirmed by (1) H NMR analysis. Interestingly, physiological alterations of the mutant strain were restored by the cell-free supernatant of the wild type. The present study demonstrates that the mioC gene plays an important role in the physiology of P.?aeruginosa and might be considered as a suitable drug target candidate in pathogenic P.?aeruginosa.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号