首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We showed previously that polyenoic fatty acids with double bonds at carbon 5,8,11 are good substrates for the 5-lipoxygenase and also can be converted to LTC and dihydroxy acids. In order to determine whether all three double bonds are necessary for the 5-lipoxygenase-leukotriene pathway we studied 5,8,14-eicosatrienoic and 5,11,14-eicosatrienoic acid. C14-labeled fatty acids were incubated with 10,000 X g supernatant of homogenate of rat basophilic leukemia (RBL-1) cells in the presence of Ca++ at 37 degrees C. 5,11,14-Eicosatrienoic acid was not converted by the 5-lipoxygenase pathway and 5,8,14-eicosatrienoic acid was mainly converted to 5-hydroxy-6,8,14-eicosatrienoic acid (5-HETE). This monohydroxy was identified by UV spectrometry (UV max 235 nm) and GC-mass spectrometry. Incubations with whole homogenate analyzed by HPLC and bioassay showed that no detectable LTC, LTD or LTE was formed. These data indicate that fatty acids which have double bonds at carbon 5 and carbon 8 are readily converted to the 5-hydroperoxide. However double bonds at carbon 5,8 and 11 are necessary for LTA biosynthesis. This study therefore extends the characterization of the double bond requirement of the 5-lipoxygenase-leukotriene pathway. The number of double bonds necessary at each step varies and increases with each step in the pathway.  相似文献   

2.
The 30-50% ammonium sulfate fraction of the high speed supernatant (100,000 xg) of a rat lung homogenate is capable of catalysing the conversion of arachidonic acid into 8,11,12- and 10,11, 12-trihydroxyeicosatrienoic acids. This enzyme preparation was resolved through DEAE cellulose chromatography into three stages which were assayed with precursors specific for each stage. Thus in the first stage arachidonic acid is converted by 12-lipoxygenase into 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid (12-HPETE) detected as the corresponding 12-hydroxy product (12-HETE). 12-HPETE in turn is converted into 8-hydroxy-11,12-epoxy-5,9,14-eicosatrienoic acid and 10-hydroxy-11,12-epoxy-5,8,14-eicosatrienoic acid. These epoxides are in turn selectively converted through an epoxide hydrase into the respective triols. While the first and third stages were carried out by distinct fractions from the DEAE columns, the second i.e. conversion of 12-HPETE into epoxides, was detected in all fractions as was the reduction of 12-HPETE into 12-HETE.  相似文献   

3.
The syntheses and biological activity of (all Z)-7,7-dimethyl-5,8,11,14- eicosatetraenoic acid, (all Z)-7,7,-dimethyl-5,8,11-eicosatrienoic acid, (Z,Z)-7,7-dimethyl-5,8-eicosadienoic acid, (all Z)-10,10-dimethyl-5,8,11,14-eicosatetraenoic acid, (all Z)-10,10-dimethyl-5,8,11-eicosatrienoic acid, and rac.-(Z,Z)-15-hydroxy-7,7-dimethyl-5,8-eicosadienoic acid are described. These arachidonic acid analogs are all inhibitors of ionophore-induced SRS-A biosynthesis in rat peritoneal cells. Their mode of action may involve inhibition of phospholipase A2 rather than delta 5-lipoxygenase. These compounds failed to exhibit significant activity in an in vivo model designed to detect inhibitors of antigen-induced, leukotriene-mediated bronchoconstriction in sensitized guinea pigs.  相似文献   

4.
The syntheses and biological activity of (all )-7,7-dimethyl-5-8,- 11,14-eicosatetraenoic acid, (all )-7,7,-dimethyl-5,8,11-eicosatrienoic acid, ( , -7,7-dimethyl-5,8-eicosadienoic acid, (all )-10,10-dimetyl- 5,8,11,14-eicosatetraenoic acid, (all -10,10-dimethyl-5,8,11-eicosatrienoic acid, and .-( , -15-hydroxy-7,7-dimethyl-5,8-eicosadienoic acid are described. These arachidonic acid analogs are all inhibitors of ionophore-induced SRS-A biosynthesis in rat peritoneal cells. Their mode of action may involve inhibition of phospholipase A2 rather than Δ5-lipoxygenase. These compounds failed to exhibit significant activity in an model designed to detect inhibitors of antigen-induced, leukotriene-mediated bronchoconstriction is sensitized guinea pigs.  相似文献   

5.
Inhibition of mammalian 5-lipoxygenase by aromatic disulfides   总被引:1,自引:0,他引:1  
As a primary step in leukotriene biosynthesis, arachidonic acid is converted into 5-hydroperoxy-6-trans-8,11,14-cis-eicosatetraenoic acid by 5-lipoxygenase. This enzyme is studied in the supernatant fraction from sonified RBL-1 cells, a preparation that converts [1-14C]arachidonic acid to 5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid and several 5,12-dihydroxyeicosatetraenoic acids including LTB4. In order to examine the reversibility of inhibitors, the supernatant fraction can be depleted of low molecular weight constituents by vacuum filtration. The 5-lipoxygenase is irreversibly inhibited by 500 microM N-ethyl-maleimide or 300 microM methyl methanethiolsulfonate, reagents that react covalently with protein sulfhydryl groups. In contrast, diphenyl disulfide reversibly inhibits this enzyme at 1-5 microM, irrespective of the GSH concentration in the supernatant. KCN also inhibits 5-lipoxygenase at 4 mM, suggesting the presence of a metal-containing prosthetic group. These observations imply that diphenyl disulfide and similar molecules with electron-releasing substituents on the aromatic rings could inhibit by binding to an electrophilic metallic center, the binding being stabilized by hydrophobic interactions between the enzyme and the aromatic groups on the flexible disulfide. Even though diphenyl disulfide does not inhibit soybean 15-lipoxygenase or endoperoxide synthase in cell-free systems, this compound does suppress prostaglandin as well as leukotriene synthesis in intact murine peritoneal macrophages and CXBG cells. Since lipoxygenases are susceptible to peroxide activation and peroxidase deactivation, changes in the redox state of the cell may alter arachidonic acid metabolism as effectively as actual enzyme inhibition.  相似文献   

6.
[1-14C] Arachidonic (eicosatetraenoic) acid was incubated at 37 degrees C for 15 min with rabbit liver microsomes fortified with NADPH (1 mM). The products were purified by high-pressure liquid chromatography (HPLC) and analyzed by gas chromatography-mass spectrometry. Based on polarity on reversed phase HPLC, the metabolites could be divided into three groups. The major metabolites of lowest polarity were 19- and 20-hydroxyarachidonic acid and 19-oxoarachidonic acid. The major metabolites of medium polarity were two diols, 14,15-dihydroxy-5,-8,11-eicosatrienoic acid and 11,12-dihydroxy-5,8,14-eicosatrienoic acid. Microsomal incubation under atmospheric isotopic oxygen led to incorporation of only one 18O molecule in each diol, indicating that the diols could originate from breakdown of 14(15)-oxido-5,8,11-eicosatrienoic acid and 11(12)-oxido-5,8,14-eicosatrienoic acid, respectively. Major metabolites in the most polar group were 14,15,19- and 14,15,20-trihydroxy-5,8,11-eicosatrienoic acid. 11,12,19- and 11,12,20-trihydroxy-5,8,14-eicosatrienoic acid and 11,12-dihydroxy-19-oxo-5,8,-14-eicosatrienonic acid. About 0.5% of exogenous radioactively labelled arachidonic was covalently bound to microsomal proteins. The metabolites and the protein-bound products were formed in considerably smaller amounts by non-fortified microsomes. Carbon monoxide inhibited this pathway of arachidonic acid metabolism, indicating that these reactions might be catalyzed by the cytochrome P-450-linked monooxygenase systems.  相似文献   

7.
The arachidonate lipoxygenase from rat basophilic leukemia cells (RBL-1) is widely utilized as a model to dissect the primary enzymatic reactions leading to leukotriene formation. The purpose of the present study was to optimize the specific activity of 5-lipoxygenase prepared from a high speed supernatant of RBL-1 cell homogenates. Activation of 5-lipoxygenase was observed in the presence of micromolar levels of calcium. A synergistic enhancement of 5-lipoxygenase was observed upon addition of equally low levels of ATP; maximal activation was induced by 5 microM CaCl2 plus 5 microM ATP. Addition of a microsomal-membrane preparation and NADPH further augmented 5-HETE biosynthesis. High concentrations (330 microM) of NADPH reversed the microsomal-induced stimulation of RBL-1 5-lipoxygenase, resulting in enzyme inhibition.  相似文献   

8.
(1-14C) Eicosatetraenoic (Arachidonic) acid was incubated wiht microsomes from rabbit renal cortex and NADPH (1 mM) for 15 min at 37°C. The products were extracted and purified by high pressure liquid chromatography. Some of the most polar metabolites were identified by gas chromatography mass spectrometry. They were 11, 12, 19- and 11, 12,20-trihydroxy-5,8-14-eicosatrienoic acid, 14,15,19- and 14,15,20- trihydroxy-5,8,11-eicosatrienoic acid, and 11,12-dihydroxy-19-oxo- 5,8,14-eicosatrienoic acid. These products were likely formed by ω- and (ω−1)-hydroxylation of 11,12-dihydroxy-5,8,14-eicosatrienoic aic and 14,15-dihydroxy-5,8,11-eicosatrienoic acid, two recently identified metabolites of arachidonic acid in fortified rabbit kidney microsomes.  相似文献   

9.
12- and 15-lipoxygenases in rat pineal gland   总被引:5,自引:0,他引:5  
A whole organ or a homogenate of rat pineal gland was incubated with arachidonic Acid. Two predominant metabolites were identified by mass spectrometry to be 12-hydroxy-5,8,10,14-eicosatetraenoic acid and 10-hydroxy-11,12-epoxy-5,8,14-eicosatrienoic acid. 15-Hydroxy-5,8,11,13-eicosatetraenoic acid was also formed in a smaller amount. In addition, peroxy acids appeared rapidly only at the initial stage of reaction. In various parts of rat brain the 12-lipoxygenase activity was by far the highest in pineal gland, and less than 5% of the activity was found in pituitary gland and hypothalamus.  相似文献   

10.
The de novo biosynthesis of 6,9,12-linolenic acid, 11,14-eicosadienoic acid, 5,11,14-eicosatrienoic acid, and arachidonic acid was demonstrated in adult female cockroaches, Periplaneta americana. These four polyunsaturated fatty acids (PUFA) were present primarily in the phospholipid (PL) fraction of both males and females. They were purified by AgNO3 thin-layer chromatography and high pressure liquid chromatography. The double bond positions of the major isomer of eicosatrienoic acid were shown to be at the delta 5,11,14 positions by gas chromatography-mass spectrometry (GC-MS) of both methoxy and epoxide derivatives and gas-liquid chromatography (GLC) and GC-MS of ozonolysis products. The other PUFAs cochromatographed with standards on both packed and capillary GLC columns. The in vivo incorporation of [1-14C]acetate into 5,11,14-eicosatrienoic acid, 11,14-eicosadienoic acid, 6,9,12-linolenic acid, and arachidonic acid was demonstrated by radio-GLC and radio-HPLC and for 5,11,14-eicosatrienoic acid by radio-GLC of ozonolysis products. The latter technique clearly demonstrated that the entire eicosatrienoic acid molecule was labeled. Thoracic tissue contained the highest amount of radiolabeled 5,11,14-eicosatrienoic acid (1.6% of total radioactivity incorporated into PL) while radiolabeled 11,14-eicosadienoic acid was found primarily in abdominal epidermal tissue (2% of total radioactivity incorporated into PL). Radiolabeled arachidonic and 6,9,12-linolenic acids comprised 0.1 and 0.02%, respectively, of the total radioactivity in the PL fraction. These data document the de novo biosynthesis of di-, tri-, and tetraunsaturated fatty acids in the American cockroach, and indicate that this animal can desaturate on both sides of the delta 9 double bond of oleic acid.  相似文献   

11.
Arachidonic acid and 12-hydroperoxyeicosa-5,8, 10, 14-tetraenoic acid are converted by a 0-30% ammonium sulfate fraction (Fraction A) of the high speed supernatant of rat lung into two hydroxy epoxides (EH-1 and EH-2) which have been purified by high performance liquid chromatography. These hydroxy epoxides are converted quantitatively into two triols (10,11,12- from EH-1 and 8,11,12- from EH-2) by a 30-50% ammonium sulfate fraction (Fraction B) of the high speed supernatant. We propose the structures, 8-hydroxy-11,12-epoxyeicosa-5,9,14-trienoic acid (EH-2) and 10-hydroxy-11,12-epoxyeicosa-5,8,14-trienoic acids (EH-1) for these intermediates on the basis of mass spectral interpretation of several derivatives including the lithium aluminum hydride reduction product of both natural and 18Oxygenated derivatives.  相似文献   

12.
[1-14C]Arachidonic acid was incubated with isolated bovine adrenal fasciculata cells for 15 min at 37gC. The metabolites were separated and purified by reverse- and straight-phase high performance liquid chromatography, and identified by gas chromatography-mass spectrometry or radioimmunoassay. Identified metabolites were 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE), 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE), leukotriene B4 and 11,14,15-trihydroxy-5,8,12-eicosatrienoic acid (11,14,15-THET). Addition of 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), an intermediate metabolite of 15-lipoxygenase pathway to microsomes of bovine adrenal fasciculata cells resulted in the formation of 11,14,15-THET. The formation of 11,14,15-THET by microsomes was not dependent on the presence of NADPH, while it was dose-dependently suppressed by ketoconazole, a potent inhibitor of cytochrome P-450 dependent enzymes. These results indicate that 5- and 15-lipoxygenase pathways of arachidonic acid may exist in bovine adrenal fasciculata cells and that 15-HPETE is further metabolized to 11,14,15-THET by adrenal microsomal cytochrome P-450.  相似文献   

13.
A lipoxygenase was purified 300-fold from a homogenate supernatant of ripe tomato fruits by fractionated ammonium sulfate precipitation and anion exchange fast protein liquid chromatography. The specific linoleate oxygenase activity of the final enzyme preparation was 1300 nkat per mg protein at pH 6.8 and 25°C in the absence of any detergent. The enzyme oxygenated linoleic acid and α-linolenic acid at comparable rates, whereas γ-linolenic acid, arachidonic acid, 11,14-eicosadienoic acid and 11,14,17-eicosatrienoic acid were poor substrates. Linoleic acid was converted to 9(S)-hydroperoxy-10E,12Z-octadecadienoic acid, whereas 5(S)-HpETE, 11(S)-HpETE and 8(S)-HpETE were identified as major oxygenation products from arachidonic acid. The tomato lipoxygenase did not react with either dilinoleyl phosphatidylcholine or the lipid extract from beef heart mitochondria. The possible biological importance of the reaction of tomato lipoxygenase with arachidonic acid is discussed.  相似文献   

14.
Arachidonate 5-lipoxygenase was purified to near homogeneity from the 105,000 X g supernatant of porcine leukocyte homogenate by immunoaffinity chromatography using a monoclonal anti-5-lipoxygenase antibody. Reaction of the purified enzyme with arachidonic acid produced predominantly 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid with concomitant formation of several more polar compounds in smaller amounts. These minor products were identified as the degradation products of leukotriene A4, namely, 6-trans-leukotriene B4 (epimeric at C-12) and an epimeric mixture of 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acids. These compounds were also produced by reaction of the enzyme with 5-hydroperoxy-eicosatetraenoic acid. Association of the 5-lipoxygenase and leukotriene A synthase activities was demonstrated by several experiments: heat inactivation of enzyme, effect of selective 5-lipoxygenase inhibitors, requirements of calcium ion and ATP, and self-catalyzed inactivation of enzyme. The enzyme was also active with 12- and 15-hydroperoxy-eicosatetraenoic acids producing (5S,12S)- and (5S,15S)-dihydroperoxy acids, respectively. Maximal velocities of the reactions with these hydroperoxy acids as compared with that of arachidonic acid (100%, 0.6 mumol/3 min/mg of protein) were as follows: 5-hydroperoxy acid, 3.5%, 12-hydroperoxy acid, 22%, and 15-hydroperoxy acid, 30%.  相似文献   

15.
Human erythrocytes contained a soluble cytosolic epoxide hydrolase for stereospecific enzymatic hydration of leukotriene A4 into leukotriene B4. The enzyme was purified 1100-fold, to apparent electrophoretic homogeneity, by conventional DEAE-Sephacel fractionation followed by high performance anion exchange and chromatofocusing procedures. Its characteristics include a molecular weight of 54,000 +/- 1,000, an isoelectric point 4.9 +/- 0.2, a Km apparent from 7 to 36 microM for enzymatic hydration of leukotriene A4, and a pH optimum ranging from 7 to 8. The enzyme was partially inactivated by its initial exposure to leukotriene A4. There was slow but detectable enzymatic hydration (pmol/min/mg) of certain arachidonic acid epoxides including (+/-)-14,15-oxido-5,8-11-eicosatrienoic acid and (+/-)-11,12-oxido-5,8,14-eicosatrienoic acid, but not others, including 5,6-oxido-8,11,14-eicosatrienoic acid. Human erythrocyte epoxide hydrolase did not hydrate either styrene oxide or trans-stilbene oxide. In terms of its physical properties and substrate preference for leukotriene A4, the erythrocyte enzyme differs from previously described versions of epoxide hydrolase. Human erythrocytes represent a novel source for an extrahepatic, cytosolic epoxide hydrolase with a potential physiological role.  相似文献   

16.
[1-14C]Eicosatetraenoic (arachidonic) acid was incubated with a low speed (17,000 X g) rabbit renal cortical supernatant or with a cortical microsomal suspension fortified with NADPH for 15 min at 37 degrees C. The products which were less polar than prostaglandins on reversed phase high performance liquid chromatography were identified by gas chromatography-mass spectrometry. Both the fortified microsomes and the low speed supernatant formed significant amounts of two novel metabolites, 11,12-dihydroxy-5,8,14-eicosatrienoic acid and 14,15-dihydroxy-5,8,11-eicosatrienoic acid. Other identified products were 19- and 20-hydroxyeicosatetraenoic acid, 19-oxoeicosatetraenoic acid, and in the low speed supernatant, eicosatetraen-1,20-dioic acid. The metabolites were not formed in significant amounts by high speed cortical supernatant or by nonfortified cortical microsomes. Carbon monoxide inhibited formation of these compounds, indicating that they may be formed by the cytochrome P-450-linked renal monooxygenase systems.  相似文献   

17.
Several alternative fatty acid substrates have been employed to characterise the kinetics of rat basophilic leukaemia cell (RBL-1) 5-lipoxygenase. Using arachidonic acid (AA) as substrate, enzymes rates declined at high substrate concentrations (greater than 25 microM) and were associated with pronounced lag phases. The concentrations of AA at which apparent substrate inhibition and lag phases were observed were comparable with those at which AA induced emulsion formation in aqueous media. No evidence for substrate inhibition or lag phases was observed using eicosapentaenoic acid (EPA), a more soluble substrate which did not induce emulsion formation at concentrations up to 100 microM. Reactions catalysed by RBL-1 5-lipoxygenase terminated before exhaustion of substrate. AA and EPA induced time-dependent enzyme inactivation at concentrations 100-fold lower than their apparent Km values for the enzyme. The ability of several fatty acids to induce time-dependent inactivation was directly proportional to their substrate potency. We conclude that apparent substrate inhibition is a consequence of a change from monomeric to micellar substrate which has a lower affinity for the enzyme and that premature termination of the enzyme reactions is a consequence of product-induced enzyme inactivation.  相似文献   

18.
Arachidonate 5-lipoxygenase purified from porcine leukocytes was incubated with (5S)-hydroperoxy-6,8,11,14-eicosatetraenoic acid. In addition to degradation products of leukotriene A4 (6-trans-leukotriene B4 and its 12-epimer and others), (5S,6R)-dihydroperoxy-7,9,11,14-eicosatetraenoic acid was produced as a major product especially when the incubation was performed on ice rather than at room temperature. The amount of the (5S,6R)-dihydroperoxy acid was close to the total amount of leukotriene A4 degradation products. Under the anaerobic condition, production of the (5S,6R)-dihydroperoxy acid was markedly reduced. 5-Hydroxy-6,8,11,14-eicosatetraenoic acid could be a substrate of the enzyme and was transformed predominantly to a compound identified as (5S)-hydroxy-(6R)-hydroperoxy-7,9-trans-11,14-cis-eicosatetraenoic acid at about 1-2% rate of arachidonate 5-oxygenation. These findings indicated that the purified 5-lipoxygenase exhibited a 6R-oxygenase activity with (5S)-hydroxy and (5S)-hydroperoxy acids as substrates. The 6R-oxygenase activity, like the leukotriene A synthase activity, was presumed to be an integral part of 5-lipoxygenase because it required calcium and ATP and was affected by selective 5-lipoxygenase inhibitors.  相似文献   

19.
The ability of (all Z)-7,7-dimethyl-5,8,11,14-eico-satetraenoic acid, (all Z)-7,7-dimethyl-5,8,11-eicosatrienoic acid, (Z,Z)-7,7-dimethyl-5,8-eicosadienoic acid, (all Z)-10,10-dimethyl-5,8,11,14-eicosatetraenoic acid, (all Z)-10,10-dimethyl-5,8,11-eicosatrienoic acid, and rac-(Z,Z)-15-hydroxy-7,7-dimethyl-5,8-eicosadienoic acid to inhibit ionophore-induced slow-reacting substance of anaphylaxis (SRS-A) biosynthesis in rat peritoneal cells was studied. It was thought that compounds such as these might inhibit proton abstractions at the 7 or 10 carbon positions on arachidonic acid which are thought to be important in the mechanism of catalysis of Δ5-lipoxygenase(Δ5-LO). All compounds were found to be potent inhibitors of SRS-A biosynthesis in the in vitro rat peritoneal cell system (IC50 < 10 μM). In fact they were more potent inhibitors in the test system than standard Δ5-LO inhibitors such as NDGA and quercetin. To determine if the mechanism of inhibition of the dimethyl arachidonic acid analogs did involve gD5-LO inhibition these compounds were evaluated in an assay system utilizing the Δ5-LO from rat basophilic leukemia (RBL?1_cells. It was found, however, that these compounds were much less potent inhibitors of this enzyme (IC50 ~ 100 μM) than standard compounds such as NDGA (IC50 0.14 μM) and quercetin (IC50, 0.2 μM). The arachidonic acid analogs were subsequently found to be potent inhibitors of phospholipase A2 (PLA2) enzymes with IC50's between 10–20 μM as inhibitors of a snake venom enzyme. In fact these compounds are among the most potent inhibitors of PLA2 yet studied, having potencies better than standards such as p-bromophenacyl bromide (IC50, 87 μM) and U-10029A (IC50, 36 μM). These results suggest that the methylated arachidonic acid analogs may inhibit SRS-A biosynthesis through inhibiting PLA2.  相似文献   

20.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is greater than 15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号