首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Few experimental models are available for the study of natural resistance to cancer. One of them is the SR/CR (spontaneous regression/complete resistance) mouse model in which natural resistance to a variety of cancer types appeared to be inherited in SR/CR strains of BALB/c and C57BL/6 mice. The genetic, cellular, and molecular effector mechanisms in this model are largely unknown, but cells from the innate immune system may play a significant role. In contrast to previous observations, the cancer resistance was limited to S180 sarcoma cancer cells. We were unable to confirm previous observations of resistance to EL-4 lymphoma cells and J774A.1 monocyte-macrophage cancer cells. The cancer resistance against S180 sarcoma cells could be transferred to susceptible non-resistant BALB/c mice as well as C57BL/6 mice after depletion of both CD4+/CD8+ leukocytes and B-cells from SR/CR mice. In the responding recipient mice, the cancer disappeared gradually following infiltration of a large number of polymorphonuclear granulocytes and remarkably few lymphocytes in the remaining tumor tissues. This study confirmed that the in vivo growth and spread of cancer cells depend on a complex interplay between the cancer cells and the host organism. Here, hereditary components of the immune system, most likely the innate part, played a crucial role in this interplay and lead to resistance to a single experimental cancer type. The fact that leukocytes depleted of both CD4+/CD8+ and B cells from the cancer resistant donor mice could be transferred to inhibit S180 cancer cell growth in susceptible recipient mice support the vision of an efficient and adverse event free immunotherapy in future selected cancer types.  相似文献   

2.

Background

In this study, we pilot tested an in vitro assay of cancer killing activity (CKA) in circulating leukocytes of 22 cancer cases and 25 healthy controls.

Methods

Using a human cervical cancer cell line, HeLa, as target cells, we compared the CKA in circulating leukocytes, as effector cells, of cancer cases and controls. The CKA was normalized as percentages of total target cells during selected periods of incubation time and at selected effector/target cell ratios in comparison to no-effector-cell controls.

Results

Our results showed that CKA similar to that of our previous study of SR/CR mice was present in human circulating leukocytes but at profoundly different levels in individuals. Overall, males have a significantly higher CKA than females. The CKA levels in cancer cases were lower than that in healthy controls (mean ± SD: 36.97 ± 21.39 vs. 46.28 ± 27.22). Below-median CKA was significantly associated with case status (odds ratio = 4.36; 95% Confidence Interval = 1.06, 17.88) after adjustment of gender and race.

Conclusions

In freshly isolated human leukocytes, we were able to detect an apparent CKA in a similar manner to that of cancer-resistant SR/CR mice. The finding of CKA at lower levels in cancer patients suggests the possibility that it may be of a consequence of genetic, physiological, or pathological conditions, pending future studies with larger sample size.  相似文献   

3.
Immunocompromised mouse models have been extensively used to assess human cell implantation for evaluation of cytotherapy, gene therapy and tissue engineering strategies, as these mice are deficient in T and B lymphoid cells. However, the innate immune response and its effect on human cell xenotransplantation in these mouse models are mainly unknown. The aim of this study is to characterise the myeloid populations in the spleen and blood of CB17 scid beige (CB17 sb) mice, and to study the inflammatory cell responses to xenogeneic implantation of enhanced green fluorescent protein (GFP)-labelled human bone marrow fibroblastic (HBMF) cells into CB17 sb mice. The results indicate that even though CB17 sb mice are deficient in B- and T-cells, they exhibit some increases in their monocyte (Mo), macrophage (Mphi) and neutrophil (Neu) populations. NK cell and eosinophil populations show no differences compared with wild-type Balb/C mice. An innate immune response, identified by CR3 (CD11b/CD18)-positive myeloid inflammatory cells and F4/80-positive macrophages, was evident in the tissues where HBMF cells were implanted. As a consequence, the majority of implanted HBMF cells were eliminated by 4 weeks after implantation. Interestingly, the mineralised matrix formed by osteogenic HBMF cells was also eroded by multinuclear Mphi-like giant cells. We conclude that CB17 sb mice retain active innate immune cells, which respond to HBMF cell xenotransplantation. This study highlights the importance of the innate immune cells in the anti-xenograft response and suggests that strategies to block the activities of these cells may ameliorate the progressive long-term elimination of xenotransplants.  相似文献   

4.
During an ongoing immune response, immune complexes, composed of Ag, complement factors, and Igs, are formed that can interact with complement receptors (CRs) and IgG Fc receptors (Fc gamma R). The role of CR1/2 and Fc gamma R in the regulation of the immune response was investigated using OVA that was chemically conjugated to whole IgG of the rat anti-mouse CR1/2 mAb 7G6. FACS analysis using the murine B cell lymphoma IIA1.6 confirmed that the 7G6-OVA conjugate recognized CR1/2. Incubating IIA1.6 cells with 7G6-OVA triggered tyrosine phosphorylation and Ag presentation to OVA-specific T cells in vitro. Immunizing mice with 7G6-OVA at a minimal dose of 1 microgram i.p. per mouse markedly enhanced the anti-OVA Ig response, which was primarily of the IgG1 isotype subclass. The 7G6-OVA did not enhance the anti-OVA response in CR1/2-deficient mice. OVA coupled to an isotype control Ab induced a considerably lower anti-OVA response compared with that induced by OVA alone, suggesting inhibition by interaction between the Fc part of the Ab and the inhibitory Fc gamma RIIb on B cells. This findings was supported by the observation that IIA1.6 cells which were incubated with 7G6-OVA lost the ability to present Ag upon transfection with Fc gamma RIIb. In sum, 7G6-conjugated OVA, resembling a natural immune complex, induces an enhanced anti-OVA immune response that involves at least CR1/2-mediated stimulation and that may be partially suppressed by Fc gamma RIIb.  相似文献   

5.
beta-Glucans were identified 36 years ago as a biologic response modifier that stimulated tumor rejection. In vitro studies have shown that beta-glucans bind to a lectin domain within complement receptor type 3 (CR3; known also as Mac-1, CD11b/CD18, or alphaMbeta2-integrin, that functions as an adhesion molecule and a receptor for factor I-cleaved C3b, i.e., iC3b) resulting in the priming of this iC3b receptor for cytotoxicity of iC3b-opsonized target cells. This investigation explored mechanisms of tumor therapy with soluble beta-glucan in mice. Normal mouse sera were shown to contain low levels of Abs reactive with syngeneic or allogeneic tumor lines that activated complement, depositing C3 onto tumors. Implanted tumors became coated with IgM, IgG, and C3, and the absent C3 deposition on tumors in SCID mice was reconstituted with IgM or IgG isolated from normal sera. Therapy of mice with glucan- or mannan-rich soluble polysaccharides exhibiting high affinity for CR3 caused a 57-90% reduction in tumor weight. In young mice with lower levels of tumor-reactive Abs, the effectiveness of beta-glucan was enhanced by administration of a tumor-specific mAb, and in SCID mice, an absent response to beta-glucan was reconstituted with normal IgM or IgG. The requirement for C3 on tumors and CR3 on leukocytes was highlighted by therapy failures in C3- or CR3-deficient mice. Thus, the tumoricidal function of CR3-binding polysaccharides such as beta-glucan in vivo is defined by natural and elicited Abs that direct iC3b deposition onto neoplastic cells, making them targets for circulating leukocytes bearing polysaccharide-primed CR3. Therapy fails when tumors lack iC3b, but can be restored by tumor-specific Abs that deposit iC3b onto the tumors.  相似文献   

6.
7.
Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice.  相似文献   

8.
9.
Trafficking and cell adhesion are key properties of cells of the immune system. However, the molecular pathways that control these cellular behaviors are still poorly understood. Cybr is a scaffold protein highly expressed in the hematopoietic/immune system whose physiological role is still unknown. In vitro studies have shown it regulates LFA-1, a crucial molecule in lymphocyte attachment and migration. Cybr also binds cytohesin-1, a guanine nucleotide exchange factor for the ARF GTPases, which affects actin cytoskeleton remodeling during cell migration. Here we show that expression of Cybr in vivo is differentially modulated by type 1 cytokines during lymphocyte maturation. In mice, Cybr deficiency negatively affects leukocytes circulating in blood and lymphocytes present in the lymph nodes. Moreover, in a Th1-polarized mouse model, lymphocyte trafficking is impaired by loss of Cybr, and Cybr-deficient mice with aseptic peritonitis have fewer cells than controls present in the peritoneal cavity, as well as fewer leukocytes leaving the bloodstream. Mutant mice injected with Moloney murine sarcoma/leukemia virus develop significantly larger tumors than wild-type mice and have reduced lymph node enlargement, suggesting reduced cytotoxic T-lymphocyte migration. Taken together, these data support a role for Cybr in leukocyte trafficking, especially in response to proinflammatory cytokines in stress conditions.  相似文献   

10.
Neuropeptide Y (NPY) modulates several aspects of the immune response but it is not known whether NPY responsiveness is altered with aging. In this work, the in vitro effect of NPY at concentrations ranging from 10(-)(14) M to 10(-)(7) M on lymphoproliferation has been studied in spleen, axillary node and thymus leukocytes from young, adult, mature and old BALB/c mice. The spontaneous proliferation of spleen lymphocytes from young mice was significantly stimulated by NPY. In response to the mitogen Con A, lymphoproliferation and IL-2 release by lymphocytes were inhibited significantly by NPY, these effects disappearing with aging. The results show that NPY is a modulator of lymphoproliferation and that this effect disappears progressively with age. Moreover, this regulatory role of NPY may be carried out through a decrease in IL-2 production.  相似文献   

11.
Th17 cells, which produce IL-17 and IL-22, promote autoimmunity in mice and have been implicated in the pathogenesis of autoimmune/inflammatory diseases in humans. However, the Th17 immune response in the aging process is still not clear. In the present study, we found that the induction of IL-17-produing CD4+ T cells was significantly increased in aged individuals compared with young healthy ones. The mRNA expression of IL-17, IL-17F, IL-22, and RORC2 was also significantly increased in aged people. Similar to humans, Th17 cells as well as mRNAs encoding IL-17, IL-22 and RORγt were dramatically elevated in naïve T cells from aged mouse compared to young ones. In addition, CD44 positive IL-17-producing CD4+ T cells were significantly higher in aged mice, suggesting that memory T cells are an important source of IL-17 production. Furthermore, the percentage of IL-17-produing CD4+ T cells generated in co-culture with dendritic cells from either aged or young mice did not show significant differences, suggesting that dendritic cells do not play a primary role in the elevation of Th17 cytokines in aged mouse cells. Importantly, transfer of CD4+CD45Rbhi cells from aged mice induced more severe colitis in RAG−/− mice compared to cells from young mice, Taken together, these results suggest that Th17 immune responses are elevated in aging humans and mice and may contribute to the increased development of inflammatory disorders in the elderly.  相似文献   

12.
Group B Streptococcus (GBS) is the foremost bacterial cause of serious neonatal infections. Protective immunity to GBS is mediated by specific Abs to the organism's capsular polysaccharide Ags. To examine the role of complement in the humoral immune response to type III GBS capsular polysaccharide (III-PS), mice deficient in C3 or in CD21/CD35 (i.e., complement receptors 1 and 2; CR1/CR2) were immunized with III-PS. Mice deficient in C3 or Cr2 had an impaired primary immune response to III-PS. The defective response was characterized by low IgM levels and the lack of an isotype switch from IgM to IgG Ab production. Compared with wild-type mice, C3- and Cr2-deficient mice exhibited decreased uptake of III-PS by follicular dendritic cells within the germinal centers and impaired localization of III-PS to the marginal zone B cells. Complement-dependent uptake of capsular polysaccharide by marginal zone B cells appears necessary for an effective immune response to III-PS. The normal immune response in wild-type mice may require localization of polysaccharide to marginal zone B cells with subsequent transfer of the Ag to follicular dendritic cells.  相似文献   

13.
Ischemic preconditioning (IP) is a well-established phenomenon, and the underlying mechanisms of IP are thought to involve adaptive changes within the injured tissue. Because one of the main functions of immune cells is to harbor memory, we hypothesized that circulating immune cells could mediate IP by responding to an initial ischemia reperfusion injury (IRI) and then mediate decreased injury after a second IRI event. C57BL/6 mice underwent 30 min of bilateral renal clamping or sham operation. At 5 days after ischemia, purified leukocytes from spleen were adoptively transferred into T cell-deficient (nu/nu) mice. After 1 wk, these mice underwent 30 min of renal IRI. The nu/nu mice receiving leukocytes from ischemic wild-type mice had significantly reduced renal injury compared with nu/nu mice receiving leukocytes from sham-operated, wild-type mice. Infiltration of neutrophil and macrophage in postischemic kidney did not correlate with the protection. No difference in kidney C3d or IgG deposition was detected between groups. Given that inducible NO synthase (iNOS) has been implicated in IP, leukocytes from ischemic or sham-operated, iNOS-deficient mice were transferred into nu/nu mice. Effects similar to those of wild-type transfer of ischemic leukocytes were demonstrated; thus, iNOS was not mediating the IP effect of leukocytes. This is the first evidence that immune cells are primed after renal IRI and thereby lose the capacity to cause kidney injury during a second episode of IRI. This finding may also be relevant for elucidating the mechanisms underlying cross-talk between injured kidney and distant organs.  相似文献   

14.
Hypersensitivity pneumonitis (HP) is mediated by Th1 immune response. NKT cells regulate immune responses by modulating the Th1/Th2 balance. Therefore, we postulated that NKT cells play a critical role in the development of the HP by modulating the Th1/Th2 response. To address this issue, we explored the functional roles of NKT cells in Saccharopolyspora rectivirgula (SR)-induced HP. In CD1d(-/-) mice, the HP was worse in terms of histological changes, hydroxyproline levels, the CD4:CD8 ratio in bronchoalveolar lavage fluid, and SR-specific immune responses than in control mice. CD1d(-/-) mice showed elevated IFN-gamma production in the lung during the HP, and this was produced mainly by Gr-1+ neutrophils. The blockade of IFN-gamma in CD1d(-/-) mice attenuated the HP, whereas the injection of rIFN-gamma aggravated it. Moreover, the depletion of Gr-1+ neutrophils reduced CD8+ T cell numbers in bronchoalveolar lavage fluid during the HP. The adoptive transfer of IL-4(-/-) mouse NKT cells did not attenuate the HP, whereas wild-type or IFN-gamma(-/-) mouse NKT cells suppressed the HP. In conclusion, NKT cells producing IL-4 play a protective role in SR-induced HP by suppressing IFN-gamma-producing neutrophils, which induce the activation and proliferation of CD8+ T cells in the lung.  相似文献   

15.
We have studied the initial innate immune response to focal necrotic injury on different sides of the mouse blood-brain barrier by two-photon intravital microscopy. Transgenic mice in which the promoter of the myeloid isoform of lysozyme drives GFP were used to track granulocytes and monocytes. Necrotic injury in the meninges, but not the brain parenchyma, recruited GFP+ cells within minutes that fully surrounded the necrotic site within a day. Recently, it has been suggested that microglial cells and astrocytes cooperate to mount a distinct response to laser injury behind the blood-brain barrier. We followed the microglial response in heterozygous knockin mice in which GFP replaces CX3CR1 coding sequence. Prior to injury, microglial cell bodies were immobile over days, but moved to the laser injury site within 1 day. We followed astrocytes, which have been proposed to cooperate with microglial cells in response to focal injury, using transgenic mice in which glial fibrillary acidic protein promoter drives GFP expression. Before injury fine astrocyte processes permeate the parenchyma. Astrocytes polarized toward the injury in an ATP, connexin hemichannels, and intracellular Ca2+ -dependent process. The astrocytes network established a cytoplasmic Ca2+ gradient that preceded the microglial response. This is consistent with astrocyte-microglial collaboration to mount this innate response that excludes blood leukocytes.  相似文献   

16.
Genetically modified CD8+ T lymphocytes have shown significant anti-tumor effects in the adoptive immunotherapy of cancer, with recent studies highlighting a potential role for a combination of other immune subsets to enhance these results. However, limitations in present genetic modification techniques impose difficulties in our ability to fully explore the potential of various T cell subsets and assess the potential of other leukocytes armed with chimeric antigen receptors (CARs). To address this issue, we generated a transgenic mouse model using a pan-hematopoietic promoter (vav) to drive the expression of a CAR specific for a tumor antigen. Here we present a characterization of the immune cell compartment in two unique vav-CAR transgenic mice models, Founder 9 (F9) and Founder 38 (F38). We demonstrate the vav promoter is indeed capable of driving the expression of a CAR in cells from both myeloid and lymphoid lineage, however the highest level of expression was observed in T lymphocytes from F38 mice. Lymphoid organs in vav-CAR mice were smaller and had reduced cell numbers compared to the wild type (WT) controls. Furthermore, the immune composition of F9 mice differed greatly with a significant reduction in lymphocytes found in the thymus, lymph node and spleen of these mice. To gain insight into the altered immune phenotype of F9 mice, we determined the chromosomal integration site of the transgene in both mouse strains using whole genome sequencing (WGS). We demonstrated that compared to the 7 copies found in F38 mice, F9 mice harbored almost 270 copies. These novel vav-CAR models provide a ready source of CAR expressing myeloid and lymphoid cells and will aid in facilitating future experiments to delineate the role for other leukocytes for adoptive immunotherapy against cancer.  相似文献   

17.
18.
19.
Immune responses wane during aging, posing challenges to the potential effectiveness of cancer immunotherapies. We previously demonstrated that in the context of a promising immunotherapeutic, OX40 agonist (αOX40), older animals exhibited impaired anti-tumor immune responses and diminished CD4 T cell effector differentiation. In this study, we hypothesized that tumor immune responses could be maintained during aging through caloric restriction (CR) or dietary supplementation with resveratrol (RES), a CR mimetic. Mice were placed on either a calorically restricted diet or a RES-formulated diet starting between 4 and 6 months of age and continued until mice reached 12 months of age. Tumor immune responses were assessed after challenging with either sarcoma or breast tumor cells followed by αOX40 treatment. Our results show that CR, but not RES, maintained OX40-mediated anti-tumor immunity. In addition, CR fully sustained antigen-specific CD4 T cell priming in aged hosts (12 months old), whereas tumor-specific CD8 T cell priming was not fully maintained compared to young reference animals (2 months old). Thus, CR appears to maintain immunological fitness of the CD4 T cell priming environment during aging, which is critical for optimal OX40-mediated responses.  相似文献   

20.
The protective host immune response to viral infections requires both effective innate and adaptive immune responses. Cross-talk between the two responses is coordinated by the chemokine network and professional APCs such as dendritic cells (DCs). In mice, subpopulations of myeloid DCs in peripheral tissues such as lungs and in blood express CX3CR1 depending on the inflammation state. We thus examined the host response of mice deficient in the chemokine receptor CX3CR1 to an intranasal vaccinia virus infection. CX3CR1-deficient mice displayed significantly more severe morbidity and mortality compared with control wild-type mice within 10 d following vaccinia virus infection. CX3CR1(-/-) mice had increased viral loads and a reduced T cell response compared with wild-type mice. Finally, an adoptive transfer of CX3CR1(+/+) DCs completely protected CX3CR1(-/-) mice to a previously lethal infection. This study therefore opens up the possibility of novel antiviral therapeutics targeting lung DC recruitment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号