首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we present a three-dimensional structure of human voltage gated Kv10.2 ion channel solved at 2.5 nm resolution. We demonstrated that Kv10.2 channel structure is subdivided into two layers. For interpretation of the structure we used the homology modeling, using the transmembrane regions of MlotiK1 channel (C subunit), and cytoplasmic PAS-PAC and cNBD domains of the N-terminal tail of hERG (A subunit) and the bacterial cyclic nucleotide-activated K+ channel binding domain as the templates. The homologous transmembrane part can be fitted into the upper part of the reconstruction. The cytoplasmic domains form the structure, similar to a "hanging gondola", which is connected to the membrane-embedded domain with linkers. The length of linkers allow contacts between C-terminal cNBD domains and N-terminal PAS domains.  相似文献   

2.
The functional role of the large intracellular regions (which include the cyclic nucleotide binding domain, cNBD, and the Per-Arnt-Sim domain, PAS) in the herg channel is not well understood. We have studied possible interactions of the cNBD with other parts of the channel protein using lysine mutations to disrupt such interactions. Some lysine mutations caused significant right shifts in the voltage dependence of inactivation; almost all the mutants caused speeding up of deactivation time course. In a homology model of the cNBD, lysine mutations that affected both inactivation and deactivation lie in a hydrophobic band on the surface of the structure of this domain. Some known mutations in the Long QT Syndrome type 2, with effects on deactivation, are located at residues close to hydrophobic bands on the cNBD and the PAS domains. Such bands of residues in these intracellular domains may play an important part in channel function.  相似文献   

3.
Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect activation properties. Here, we have studied the effect of mutations of residues on the surfaces of PAS and cNBD domains. For this, we introduced alanine and lysine mutations in heag1 channels, and recorded currents by two-electrode voltage clamp. In both the PAS domain and the cNBD domain, contiguous areas of conserved residues on the surfaces of these domains were found which affected the activation kinetics of the channel. Next, we investigated possible effects of mutations on domain interactions of PAS and cNBD proteins in heag2 by co-expressing these domain proteins followed by analysis with native gels and western blotting. We found oligomeric association between these domains. Mutations F30A and A609K (on the surfaces of the PAS and cNBD domains, respectively) affected oligomeric compositions of these domains when proteins for PAS and cNBD domains were expressed together. Taken together, the data suggest that the PAS and cNBD domains form interacting oligomers that have roles in channel function.  相似文献   

4.
The hERG (human ether-à-go-go related gene) channel is a member of the eag voltage-gated K+ channel family. In common with other members of this family, it has a subunit topology of six trans-membrane helices that tetramerise to form a functional ion-channel. In addition, hERG has an N-terminal PAS (Per, Arnt and Sim) domain and a C-terminal cyclic nucleotide binding domain (cNBD). Both these cytosolic domains are involved in regulation of the gating of the ion channel as demonstrated by inheritable mutations in these domains that result in either a loss, or a gain, in function. Here we report near complete backbone and side chain 15N, 13C and 1H assignments for the N-terminal domain (residues 1–135) including the functionally critical first 26 residues. Comparison with the secondary structure of the crystal structure (residues 26–135) suggests that the solution and crystal structures are very similar except that the solution structure contains an additional helix between residues 12–23; a region of the protein important for channel gating.  相似文献   

5.
Abstract

The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The homology models reveal that the T1 domains of these Kv channels exhibit similar folds as those of Shaker K+ channel. These models also show that each T1 monomer consists of three distinct layers, with N-terminal layer 1 and C- terminal layer 3 facing the cytoplasm and the membrane, respectively. Layer 2 exhibits the highest structural conservation because it is located around the central hydrophobic core. For each Kv channel, four identical subunits assemble into the homotetramer architecture around a four-fold axis through the hydrogen bonds and salt bridges formed by 15 highly conserved polar residues. The narrowest opening of the pore is formed by the four conserved residues corresponding to R115 of the Shaker T1 domain. The homology models of these Kv T1 domains provide particularly attractive targets for further structure-based studies.  相似文献   

6.
A voltage-gated potassium channel Kv10.2 is expressed in the nervous system, but its functions and involvement in the development of human disease remain poorly understood. Mutant forms of the Kv10.2 channel were found in patients with epileptic encephalopathy and autism. Molecular modeling of the channel spatial structure is an important tool for gaining knowledge about the molecular aspects of the channel functioning and mechanisms responsible for pathogenesis. In the present work, molecular modeling of the helical fragment of the human Kv10.2 (hEAG2) C-terminal domain in dimeric, trimeric, and tetrameric forms was performed. The stability of all forms was confirmed by molecular dynamics simulation. Contacts and interactions, stabilizing the structure, were identified.  相似文献   

7.
Kv2.1 channels are widely expressed in neuronal and endocrine cells and generate slowly activating K+ currents, which contribute to repolarization in these cells. Kv2.1 is expressed at high levels in the mammalian brain and is a major component of the delayed rectifier current in the hippocampus. In addition, Kv2.1 channels have been implicated in the regulation of membrane repolarization, cytoplasmic calcium levels, and insulin secretion in pancreatic β-cells. They are therefore an important drug target for the treatment of Type II diabetes mellitus. We used electron microscopy and single particle image analysis to derive a three-dimensional density map of recombinant human Kv2.1. The tetrameric channel is egg-shaped with a diameter of ∼80 Å and a long axis of ∼120 Å. Comparison to known crystal structures of homologous domains allowed us to infer the location of the cytoplasmic and transmembrane assemblies. There is a very good fit of the Kv1.2 crystal structure to the assigned transmembrane assembly of Kv2.1. In other low-resolution maps of K+ channels, the cytoplasmic N-terminal and transmembrane domains form separate rings of density. In contrast, Kv2.1 displays contiguous density that connects the rings, such that there are no large windows between the channel interior and the cytoplasmic space. The crystal structure of KcsA is thought to be in a closed conformation, and the good fit of the KcsA crystal structure to the Kv2.1 map suggests that our preparations of Kv2.1 may also represent a closed conformation. Substantial cytoplasmic density is closely associated with the T1 tetramerization domain and is ascribed to the ∼184 kDa C-terminal regulatory domains within each tetramer.  相似文献   

8.
The homology models of the tetramerization (T1) domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were constructed based on the crystal structure of the Shaker T1 domain. The results of amino acid sequence alignment indicate that the T1 domains of these K+ channels are highly conserved, with the similarities varying from 77% between Shaker and Kv1.6 to 93% between Kv1.2 and Kv1.3. The homology models reveal that the T1 domains of these Kv channels exhibit similar folds as those of Shaker K+ channel. These models also show that each T1 monomer consists of three distinct layers, with N-terminal layer 1 and C-terminal layer 3 facing the cytoplasm and the membrane, respectively. Layer 2 exhibits the highest structural conservation because it is located around the central hydrophobic core. For each Kv channel, four identical subunits assemble into the homotetramer architecture around a four-fold axis through the hydrogen bonds and salt bridges formed by 15 highly conserved polar residues. The narrowest opening of the pore is formed by the four conserved residues corresponding to R115 of the Shaker T1 domain. The homology models of these Kv T1 domains provide particularly attractive targets for further structure-based studies.  相似文献   

9.
KCNH1 (EAG1) is a member of the Kv family of voltage-gated potassium channels. However, KCNH1 channels also show some amino-acid sequence similarity to cyclic-nucleotide-regulated channels: they harbor an N-terminal PAS domain, a C-terminal cyclic nucleotide binding homology domain (cNBHD), and N- and C-terminal binding sites for calmodulin. Another notable feature is the channels' high sensitivity toward oxidative modification. Using human KCNH1 expressed in Xenopus oocytes and HEK 293 cells we investigated how oxidative modification alters channel function. Intracellular application of H2O2 or cysteine-specific modifiers potently inhibited KCNH1 channels in two phases. Our systematic cysteine mutagenesis study showed that the rapid and dominant phase was attributed to a right-shift in the voltage dependence of activation, caused by chemical modification of residues C145 and C214. The slow component depended on the C-terminal residues C532 and C562. The cysteine pairs are situated at structural elements linking the transmembrane S1 segment with the PAS domain (N-linker) and the transmembrane channel gate S6 with the cNBH domain (C-linker), respectively. The functional state of KCNH1 channels is determined by the oxidative status of these linkers that provide an additional dimension of channel regulation.  相似文献   

10.
Previous studies have shown that the unusually long S5-P linker lining human ether a-go-go related gene's (hERG's) outer vestibule is critical for its channel function: point mutations at high-impact positions here can interfere with the inactivation process and, in many cases, also reduce the pore's K+ selectivity. Because no data are available on the equivalent region in the available K channel crystal structures to allow for homology modeling, we used alternative approaches to model its three-dimensional structure. The first part of this article describes mutant cycle analysis used to identify residues on hERG's outer vestibule that interact with specific residues on the interaction surface of BeKm-1, a peptide toxin with known NMR structure and a high binding affinity to hERG. The second part describes molecular modeling of hERG's pore domain. The transmembrane region was modeled after the crystal structure of KvAP pore domain. The S5-P linker was docked to the transmembrane region based on data from previous NMR and mutagenesis experiments, as well as a set of modeling criteria. The models were further restrained by contact points between hERG's outer vestibule and the bound BeKm-1 toxin molecule deduced from the mutant cycle analysis. Based on these analyses, we propose a working model for the open conformation of the outer vestibule of the hERG channel, in which the S5-P linkers interact with the pore loops to influence ion flux through the pore.  相似文献   

11.
MiRP1 (encoded by the KCNE2 gene) is one of a family of five single transmembrane domain voltage-gated potassium (Kv) channel ancillary subunits currently under intense scrutiny to establish their position in channel complexes and elucidate alpha subunit contact points, but its structure is unknown. MiRP1 mutations are associated with inherited and acquired cardiac arrhythmia. Here, synthetic peptides corresponding to human MiRP1 (full-length and separate domains) were structurally analyzed using FTIR and CD spectroscopy. The N-terminal (extracellular) domain was soluble and predominantly non-ordered in aqueous media, but predominantly alpha-helical in L-alpha-lysophosphatidylcholine (LPC) micelles. The MiRP1 transmembrane domain was predominantly a mixture of alpha-helix and non-ordered structure in LPC micelles, with a minor contribution from non-aggregated beta-strand. The intracellular C-terminal domain was insoluble in aqueous solution; reconstitution into non-aqueous environments resulted in solubility and adoption of increasing amounts of alpha-helix, with the solvent order sodium dodecyl sulphate < dimyristoyl L-alpha-phosphatidylcholine (DMPC) < LPC < trifluoroethanol. Correlation of secondary structure changes with lipid transition temperature during heating suggested that the MiRP1 C-terminus incorporates into DMPC bilayers. Full-length MiRP1 was soluble in SDS micelles and calculated to contain 34% alpha-helix, 23% beta-strand and 43% non-ordered structure in this environment, as determined by CD spectroscopy. Thus, MiRP1 is highly dependent upon hydrophobic interaction via lipid and/or protein contacts for adoption of ordered structure without nonspecific aggregation, consistent with a role as a membrane-spanning subunit within Kv channel complexes. These data will provide a structural framework for ongoing mutagenesis-based in situ structure-function studies of MiRP1 and its relatives.  相似文献   

12.
Voltage-dependent potassium (Kv), sodium (Nav), and calcium channels open and close in response to changes in transmembrane (TM) potential, thus regulating cell excitability by controlling ion flow across the membrane. An outstanding question concerning voltage gating is how voltage-induced conformational changes of the channel voltage-sensing domains (VSDs) are coupled through the S4-S5 interfacial linking helices to the opening and closing of the pore domain (PD). To investigate the coupling between the VSDs and the PD, we generated a closed Kv channel configuration from Aeropyrum pernix (KvAP) using atomistic simulations with experiment-based restraints on the VSDs. Full closure of the channel required, in addition to the experimentally determined TM displacement, that the VSDs be displaced both inwardly and laterally around the PD. This twisting motion generates a tight hydrophobic interface between the S4-S5 linkers and the C-terminal ends of the pore domain S6 helices in agreement with available experimental evidence.  相似文献   

13.
The hERG1 gene (Kv11.1) encodes a voltage‐gated potassium channel. Mutations in this gene lead to one form of the Long QT Syndrome (LQTS) in humans. Promiscuous binding of drugs to hERG1 is known to alter the structure/function of the channel leading to an acquired form of the LQTS. Expectably, creation and validation of reliable 3D model of the channel have been a key target in molecular cardiology and pharmacology for the last decade. Although many models were built, they all were limited to pore domain. In this work, a full model of the hERG1 channel is developed which includes all transmembrane segments. We tested a template‐driven de‐novo design with ROSETTA‐membrane modeling using side‐chain placements optimized by subsequent molecular dynamics (MD) simulations. Although backbone templates for the homology modeled parts of the pore and voltage sensors were based on the available structures of KvAP, Kv1.2 and Kv1.2‐Kv2.1 chimera channels, the missing parts are modeled de‐novo. The impact of several alignments on the structure of the S4 helix in the voltage‐sensing domain was also tested. Herein, final models are evaluated for consistency to the reported structural elements discovered mainly on the basis of mutagenesis and electrophysiology. These structural elements include salt bridges and close contacts in the voltage‐sensor domain; and the topology of the extracellular S5‐pore linker compared with that established by toxin foot‐printing and nuclear magnetic resonance studies. Implications of the refined hERG1 model to binding of blockers and channels activators (potent new ligands for channel activations) are discussed. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Liu HL  Lin JC 《Proteins》2004,55(3):558-567
Homology models of the pore loop domain of six eukaryotic potassium channels, Kv1.1-Kv1.6, were generated based on the crystallographic structure of KcsA. The results of amino acid sequence alignment indicate that these Kv channels are composed of two structurally and functionally independent domains: the N-terminal 'voltage sensor' domain and the C-terminal 'pore loop' domain. The homology models reveal that the pore loop domains of these Kv channels exhibit similar folds to those of KcsA. The structural features and specific packing of aromatic residues around the selectivity filter of these Kv channels are nearly identical to those of KcsA, whereas most of the structural variations occur in the turret as well as in the inner and outer helices. The distribution of polar and nonpolar side chains on the surfaces of the KcsA and Kv channels reveals that they exhibit a segregation of side chains common to most integral membrane proteins. As the hydrogen bond between Glu71 and Asp80 in KcsA plays an important role in stabilizing the channel, the substituted Val residue in the Kv family corresponding to Glu71 of KcsA stabilizes the channel by making hydrophobic contact with Tyr residue from the signature sequence of the selectivity filter. The homology models of these Kv channels provide particularly attractive subjects for further structure-based studies.  相似文献   

15.
Dipeptidyl peptidase-like protein 6 (DPP6) is an auxiliary subunit of the Kv4 family of voltage-gated K+ channels known to enhance channel surface expression and potently accelerate their kinetics. DPP6 is a single transmembrane protein, which is structurally remarkable for its large extracellular domain. Included in this domain is a cysteine-rich motif, the function of which is unknown. Here we show that this cysteine-rich domain of DPP6 is required for its export from the ER and expression on the cell surface. Disulfide bridges formed at C349/C356 and C465/C468 of the cysteine-rich domain are necessary for the enhancement of Kv4.2 channel surface expression but not its interaction with Kv4.2 subunits. The short intracellular N-terminal and transmembrane domains of DPP6 associates with and accelerates the recovery from inactivation of Kv4.2, but the entire extracellular domain is necessary to enhance Kv4.2 surface expression and stabilization. Our findings show that the cysteine-rich domain of DPP6 plays an important role in protein folding of DPP6 that is required for transport of DPP6/Kv4.2 complexes out of the ER.  相似文献   

16.
The three-dimensional structure of a human voltage-gated potassium Kv10.2 channel which lacks a cytoplasmic N-terminal PAS-domain was determined, and its distribution in eukaryotic cells was investigated. The channel protein was expressed in the COS7 cell line and purified by affinity chromatography. The channel distribution on the cell surface was determined by the immunofluorescence method using the antibodies against its C-terminus. PAS-domain truncation was shown to cause a decrease the expression of the channels on the cell surface. In order to reveal the positions of the channel cytoplasmic domains, the threedimensional structure of the protein lacking the cytoplasmic PAS-domain was compared to the previously obtained full-length structure. We demonstrated that the C-terminal CNBD-domain of the Kv10.2 channel undergoes conformational rearrangements in the absence of its N-terminal PAS-domain.  相似文献   

17.
Regulation of the Kv2.1 Potassium Channel by MinK and MiRP1   总被引:1,自引:0,他引:1  
Kv2.1 is a voltage-gated potassium (Kv) channel α-subunit expressed in mammalian heart and brain. MinK-related peptides (MiRPs), encoded by KCNE genes, are single–transmembrane domain ancillary subunits that form complexes with Kv channel α-subunits to modify their function. Mutations in human MinK (KCNE1) and MiRP1 (KCNE2) are associated with inherited and acquired forms of long QT syndrome (LQTS). Here, coimmunoprecipitations from rat heart tissue suggested that both MinK and MiRP1 form native cardiac complexes with Kv2.1. In whole-cell voltage-clamp studies of subunits expressed in CHO cells, rat MinK and MiRP1 reduced Kv2.1 current density three- and twofold, respectively; slowed Kv2.1 activation (at +60 mV) two- and threefold, respectively; and slowed Kv2.1 deactivation less than twofold. Human MinK slowed Kv2.1 activation 25%, while human MiRP1 slowed Kv2.1 activation and deactivation twofold. Inherited mutations in human MinK and MiRP1, previously associated with LQTS, were also evaluated. D76N–MinK and S74L–MinK reduced Kv2.1 current density (threefold and 40%, respectively) and slowed deactivation (60% and 80%, respectively). Compared to wild-type human MiRP1–Kv2.1 complexes, channels formed with M54T– or I57T–MiRP1 showed greatly slowed activation (tenfold and fivefold, respectively). The data broaden the potential roles of MinK and MiRP1 in cardiac physiology and support the possibility that inherited mutations in either subunit could contribute to cardiac arrhythmia by multiple mechanisms. Electronic supplementary material  The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Z. A. McCrossan and T. K. Roepke have contributed equally to this work.  相似文献   

18.
Abstract

The hERG potassium channel is a member of the voltage gated potassium (Kv) channel family, comprising a pore domain and four voltage sensing domains (VSDs). Like other Kv channels, the VSD senses changes in membrane voltage and transmits the signal to gates located in the pore domain; the gates open at positive potentials (activation) and close at negative potentials, thereby controlling the ion flux. hERG, however, differs from other Kv channels in that it is activated slowly but inactivated rapidly – a property that is crucial for the role it plays in the repolarization of the cardiac action potential. Voltage-gating requires movement of gating charges across the membrane electric field, which is accomplished by the transmembrane movement of the fourth transmembrane segment, S4, of the VSD containing the positively charged arginine or lysine residues. Here we ask if the functional differences between hERG and other Kv channels could arise from differences in the transmembrane movement of S4. To address this, we have introduced single cysteine residues into the S4 region of the VSD, expressed the mutant channels in Xenopus oocytes and examined the effect of membrane impermeable para-chloromercuribenzene sulphonate on function by the two-electrode voltage clamp technique. Our results show that depolarization results in the accessibility of seven consecutive S4 residues, including the first two charged residues, K525 and R528, to extracellularly applied reagent. These data indicate that the extent of S4 movement in hERG is similar to other Kv channels, including the archabacterial KvAP and the Shaker channel of Drosophila.  相似文献   

19.
Immunoglobulin D (IgD) of Atlantic cod has a unique structure   总被引:8,自引:3,他引:5  
 A new immunoglobulin heavy-chain gene with some homology to mammalian IgD was recently cloned from the channel catfish and Atlantic salmon, two species of teleost fish. We have cloned and sequenced a new H-chain gene from Atlantic cod (Gadus morhua L.) which has clear similarities to these genes, but which also differs in several ways. The similarities of catfish, salmon, and cod delta to the mammalian delta genes are sequence homology, location immediately downstream of IgM (mu), and expression by alternative splicing rather than class switching. A unique feature of catfish, salmon, and cod delta is the chimeric nature of the gene product, as the μ1 exon is spliced to the δ1 exon. Several unique features of cod IgD were found: (1) a deletion of the δ3, δ4, δ5, and δ6 domains described in catfish and salmon IgD, (2) a tandem duplication of a part of the delta locus including the δ1 and δ2 domains, (3) the presence of a truncated δ7 domain downstream of the δTM exons, and (4) the separation of the duplicated domains by a short exon (δy) which has homology to a conserved part of the transmembrane exon 1 (TM1) of some H-chain isotypes. This unique organization of the delta locus of cod probably developed after the evolutionary split from the catfish and salmon branches. Received: 18 August 1999 / Revised: 28 December 1999  相似文献   

20.
Voltage-gated K+ channels share a common voltage sensor domain (VSD) consisting of four transmembrane helices, including a highly mobile S4 helix that contains the major gating charges. Activation of ether-a-go-go (EAG) family K+ channels is sensitive to external divalent cations. We show here that divalent cations slow the activation rate of two EAG family channels (Kv12.1 and Kv10.2) by forming a bridge between a residue in the S4 helix and acidic residues in S2. Histidine 328 in the S4 of Kv12.1 favors binding of Zn2+ and Cd2+, whereas the homologous residue Serine 321 in Kv10.2 contributes to effects of Mg2+ and Ni2+. This novel finding provides structural constraints for the position of transmembrane VSD helices in closed, ion-bound EAG family channels. Homology models of Kv12.1 and Kv10.2 VSD structures based on a closed-state model of the Shaker family K+ channel Kv1.2 match these constraints. Our results suggest close conformational conservation between closed EAG and Shaker family channels, despite large differences in voltage sensitivity, activation rates, and activation thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号