首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Neurite outgrowth is mediated by dynamic changes of the cytoskeleton and is largely controlled by Rho GTPases and their regulators. Here, we show that the polarity protein Scribble controls PC12 cell neurite outgrowth in response to nerve growth factor. Scribble knockdown decreases neurite numbers and increases neurite length. This effect is linked to TrkA the cognate receptor for NGF as pharmacological inhibition of phosphorylated TrkA (pTrkA) reduces Scribble expression. Moreover, Scribble forms a complex with the MAPK components ERK1/2 in a growth factor dependent manner. In RNAi experiments where Scribble expression is efficiently depleted sustained ERK1/2 phosphorylation is reduced. Conversely, siRNA with intermediate Scribble silencing efficiency fails to match this effect indicating that ERK1/2 activation depends on basic Scribble protein levels. Finally, Scribble translocates to the plasma membrane in response to growth factor where it complexes with HRas and Rac1 suggesting that the phenotype activated by loss of Scribble may be a result of altered GTPase activity. Together, these results demonstrate a novel role for Scribble in neurite outgrowth of PC12 cells.  相似文献   

4.
Rat pheochromocytoma 12 (PC12) cells undergo neuronal differentiation in response to nerve growth factor (NGF). NGF-induced differentiation involves a number of protein kinases, including extracellular signal-regulated kinase (ERK). We studied the effect of iron on neuronal differentiation, using as model the neurite outgrowth of PC12 cells triggered by NGF when the cells are plated on collagen-coated dishes in medium containing 1% serum. The addition of iron enhanced NGF-mediated cell adhesion, spreading and neurite outgrowth. The differentiation-promoting effect of iron seems to depend on intracellular iron, since nitrilotriacetic acid (an efficient iron-uptake mediator) enhanced the response to iron. In agreement with this, intracellular, but not extracellular, iron enhanced NGF-induced neurite outgrowth in pre-spread PC12 cells, and this was correlated with increased ERK activity. Taken together, these data suggest that intracellular iron promotes NGF-stimulated differentiation of PC12 cells by increasing ERK activity.  相似文献   

5.
Panaxynol, a polyacetylene ((3R)-heptadeca-1,9-diene-4,6-diyn-3-ol; syn. falcarinol), was isolated from the lipophilic fractions of Panax notoginseng, a Chinese traditional medicinal plant. In the present study, we reported the neurotrophic effects of panaxynol on PC12D cells and mechanism involved in neurite outgrowth of the cells. Panaxynol could morphologically promote neurite outgrowth in PC12D cells, concentration-dependently reduce cell division and up-regulate molecular marker (MAP1B) expression in PC12D cells. Panaxynol induces the elevation of intracellular cAMP in PC12D cells. The neurite outgrowth in PC12D cells induced by panaxynol could be inhibited by the protein kinase A inhibitor RpcAMPS and by MAP kinase kinase 1/2 inhibitor U0126. These observations reveal that panaxynol could induce the differentiation of PC12D cells in a process similar to but distinct from that of NGF and the panaxynol's effects were via cAMP- and MAP kinase-dependent mechanisms.  相似文献   

6.
Gelsolin overexpression enhances neurite outgrowth in PC12 cells.   总被引:6,自引:0,他引:6  
The rational design of therapies for treating nerve injuries requires an understanding of the mechanisms underlying neurite extension. Neurite motility is driven by actin polymerization; however, the mechanisms are not clearly understood. One actin accessory protein, gelsolin, is involved with remodeling the cytoskeleton, although its role in cell motility is unclear. We report a two-fold upregulation of gelsolin upon differentiation with nerve growth factor. Cells that were genetically modified to overexpress gelsolin have longer neurites and a greater neurite motility rate compared to controls. These data suggest that gelsolin plays an important role in neurite outgrowth.  相似文献   

7.
Neu differentiation factor (NDF; also known as neuregulin) induces a pleiotropic cellular response that is cell type-dependent. NDF and its receptor ErbB-4 are highly expressed in neurons, implying important roles in neuronal cell functions. In the present study we demonstrate that ErbB-4 receptors expressed in PC12 cells mediate NDF-induced signals and neurite outgrowth that are indistinguishable from those mediated by the nerve growth factor-activated Trk receptors. In PC12-ErbB-4 cells but not in PC12 cells, NDF induced an initial weak mitogenic signal and subsequently neurite outgrowth. The NDF-induced differentiation in PC12-ErbB-4 cells was mimicked by the pan-ErbB ligand betacellulin but not by other epidermal growth factor-like ligands. Thus, NDF and betacellulin mediate similar activities through the ErbB-4 receptor. Indeed, only these ligands induced strong phosphorylation of the ErbB-4 receptors. Neurite outgrowth induced by NDF in PC12-ErbB-4 cells was accompanied by sustained activation of mitogen-activated protein kinase (MAPK) and induction of the neural differentiation marker GAP-43. Inhibition of the MAPK kinase MEK or of protein kinase C (PKC) blocked NDF-induced differentiation, whereas elevation of cyclic AMP levels enhanced the response. Taken together, these results indicate that neurite outgrowth induced by ErbB-4 in PC12 cells requires MAPK and PKC signaling networks.  相似文献   

8.
Laminin is a potent stimulator of neurite outgrowth in a variety of primary neurons and neuronal cell lines. Here, we investigate the role of nitric oxide in the signaling mechanism of laminin-mediated neurite outgrowth in the PC12 cell line. Within 8 s of exposure to laminin, PC12 cells produce nitric oxide. Peak laminin-induced nitric oxide levels reach 8 nM within 12 s of exposure to laminin and constitutive nitric oxide production is sustained for 1 min. A neurite outgrowth promoting synthetic peptide (AG73), derived from the laminin-1-alpha globular domain, also stimulated nitric oxide release. The nitric oxide synthase inhibitor, 1-NAME, prevents the formation of nitric oxide and here, 1-NAME inhibited both laminin-mediated and AG73-mediated neurite outgrowth by 88 and 95%, respectively. In contrast, C16, a synthetic peptide derived from the laminin-1-gamma chain, is shown here to promote PC12 cell attachment, but not neurite outgrowth. Interestingly, the C16 peptide did not activate nitric oxide release, suggesting that laminin-induced nitric oxide release in PC12 cells is associated only with neurite outgrowth promoting laminin domains and signals. In addition, the data here show that the nitric oxide released by PC12 cells in response to laminin is required as a part of the mechanism of laminin-mediated neurite outgrowth.  相似文献   

9.
We report here that basic fibroblast growth factor (bFGF)-elicited neurite outgrowth in PC12 cells is potentiated by dibutyryl cyclic adenosine monophosphate (dbcAMP) or forskolin. This property was also described for nerve growth factor (NGF), suggesting that both NGF and bFGF may share common intracellular events leading to neurite outgrowth and synergism with dbcAMP and forskolin. The synergistic effect of dbcAMP and forskolin is specific, since treatment of PC12 cells with bFGF and dibutyryl cyclic guanosine monophosphate (dbcGMP) or phorbol ester did not change the neurite outgrowth response of cells treated with bFGF alone. Furthermore, neurite outgrowth depends on cellular adhesion. Increasing adhesion by plate treatment with poly-d-lysine increases the neurite outgrowth elicited by bFGF alone or bFGF plus dbcAMP. On the other hand, decreasing cellular adhesiveness by plating PC12 cells in semi-solid agarose renders the cells unable to develop neuritic processes. In addition, 3H-methylthymidine incorporation studies showed that bFGF-treated PC12 cells cease growth only when they become fully differentiated after 3-5 days of treatment. In contrast, dbcAMP, which is a poor differentiation factor, is able to block cellular growth after 24 hour treatment. These results suggest that when PC12 cells become differentiated, they stop growing. However, growth inhibition does not necessarily lead to differentiation.  相似文献   

10.
Neuroserpin is a serine protease inhibitor widely expressed in the developing and adult nervous systems and implicated in the regulation of proteases involved in processes such as synaptic plasticity, neuronal migration and axogenesis. We have analysed the effect of neuroserpin on growth factor-induced neurite outgrowth in PC12 cells. We show that small changes in neuroserpin expression result in changes to the number of cells extending neurites and total neurite length following NGF treatment. Increased expression of neuroserpin resulted in a decrease in the number of cells extending neurites and a reduction in total free neurite length whereas reduced levels of neuroserpin led to a small increase in the number of neurite extending cells and a significant increase in total free neurite length compared to the parent cell line. Neuroserpin also altered the response of PC12 cells to bFGF and EGF treatment. Neuroserpin was localised to dense cored secretory vesicles in PC12 cells but was unable to complex with its likely enzyme target, tissue plasminogen activator at the acidic pH found in these vesicles. These data suggest that modulation of neuroserpin levels at the extending neurite growth cone may play an important role in regulating axonal growth.  相似文献   

11.
A novel cyathane diterpenoid, designated scabronine M (1), was isolated from the fruiting bodies of the mushroom Sarcodon scabrosus together with 10 known compounds. The structure of the new compound was elucidated on the basis of extensive spectroscopic analysis including 2D-NMR. Among these compounds, only scabronine M (1) significantly inhibited dose-dependently NGF-induced neurite outgrowth in PC12 cells without cytotoxicity, possibly through suppressing the phosphorylation of the receptor Trk A and the extracellular signal regulated kinases (ERK). This is the first report of novel neurite outgrowth-inhibiting activity in PC12 cells of this group of diterpenoids.  相似文献   

12.
13.
The novel Ras-like small GTPase Rin is expressed prominently in adult neurons, and binds calmodulin (CaM) through its COOH-terminal-binding motif. It might be involved in calcium/CaM-mediated neuronal signaling, but Rin-mediated signal transduction pathways have not yet been elucidated. Here, we show that expression of Rin induces neurite outgrowth without nerve growth factor or mitogen-activated protein kinase activation in rat pheochromocytoma PC12 cells. Rin-induced neurite outgrowth was markedly inhibited by coexpression with dominant negative Rac/Cdc42 protein or CaM inhibitor treatment. We also found that expression of Rin elevated the endogenous Rac/Cdc42 activity. Rin mutant proteins, in which the mutation disrupted association with CaM, failed to induce neurite outgrowth irrespective of Rac/Cdc42 activation. Disruption of endogenous Rin function inhibited the neurite outgrowth stimulated by forskolin and extracellular calcium entry through voltage-dependent calcium channel evoked by KCl. These findings suggest that Rin-mediated neurite outgrowth signaling requires not only endogenous Rac/Cdc42 activation but also Rin-CaM association, and that endogenous Rin is involved in calcium/CaM-mediated neuronal signaling pathways.  相似文献   

14.
Rac1 plays a key role in neurite outgrowth via reorganization of the actin cytoskeleton. The molecular mechanisms underlying Rac1-mediated actin dynamics in the cytosol and plasma membrane have been intensively studied, but the nuclear function of Rac1 in neurite outgrowth has not yet been addressed. Using subcellular fractionation and immunocytochemistry, we sought to explore the role of nuclear Rac1 in neurite outgrowth. bFGF, a strong agonist for neurite outgrowth in PC12 cells, stimulated the nuclear accumulation of an active form of Rac1. Rac1-PBR (Q) mutant, in which six basic residues in the polybasic region at the C-terminus were replaced by glutamine, didn’t accumulate in the nucleus. In comparison with control cells, cells expressing this mutant form of Rac1 displayed a marked defect in extending neurites that was concomitant with reduced expression of MAP2 and MEK-1. These results suggest that Rac1 translocation to the nucleus functionally correlates with bFGF-induced neurite outgrowth. [BMB Reports 2013; 46(12): 617-622]  相似文献   

15.
To determine the role of Dp71 in neuronal cells, we generated PC12 cell lines in which Dp71 protein levels were controlled by stable transfection with either antisense or sense constructs. Cells expressing the antisense Dp71 RNA (antisense-Dp71 cells) contained reduced amounts of the two endogenous Dp71 isoforms. Antisense-Dp71 cells exhibited a marked suppression of neurite outgrowth upon the induction with NGF or dibutyryl cyclic AMP. Early responses to NGF-induced neuronal differentiation, such as the cessation of cell division and the activation of ERK1/2 proteins, were normal in the antisense-Dp71 cells. On contrary, the induction of MAP2, a late differentiation marker, was disturbed in these cells. Additionally, the deficiency of Dp71 correlated with an altered expression of the dystrophin-associated protein complex (DAPC) members alpha and beta dystrobrevins. Our results indicate that normal expression of Dp71 is essential for neurite outgrowth in PC12 cells and constitute the first direct evidence implicating Dp71 in a neuronal function.  相似文献   

16.
Rab22 is a small GTPase that is localized on early endosomes and regulates early endosomal sorting. This study reports that Rab22 promotes nerve growth factor (NGF) signaling-dependent neurite outgrowth and gene expression in PC12 cells by sorting NGF and the activated/phosphorylated receptor (pTrkA) into signaling endosomes to sustain signal transduction in the cell. NGF binding induces the endocytosis of pTrkA into Rab22-containing endosomes. Knockdown of Rab22 via small hairpin RNA (shRNA) blocks NGF-induced pTrkA endocytosis into the endosomes and gene expression (VGF) and neurite outgrowth. Overexpression of human Rab22 can rescue the inhibitory effects of the Rab22 shRNA, suggesting a specific Rab22 function in NGF signal transduction, rather than off-target effects. Furthermore, the Rab22 effector, Rabex-5, is necessary for NGF-induced neurite outgrowth and gene expression, as evidenced by the inhibitory effect of shRNA-mediated knockdown of Rabex-5. Disruption of the Rab22-Rabex-5 interaction via overexpression of the Rab22-binding domain of Rabex-5 in the cell also blocks NGF-induced neurite outgrowth, suggesting a critical role of Rab22-Rabex-5 interaction in the biogenesis of NGF-signaling endosomes to sustain the signal for neurite outgrowth. These data provide the first evidence for an early endosomal Rab GTPase as a positive regulator of NGF signal transduction and cell differentiation.  相似文献   

17.
The Gab1-docking protein has been shown to regulate phosphatidylinositol 3-kinase PI3K activity and potentiate nerve growth factor (NGF)-induced survival in PC12 cells. Here, we investigated the potential of Gab1 to induce neurite outgrowth and DNA synthesis, two other important aspects of NGF-induced neuronal differentiation of PC12 cells and NGF-independent survival. We generated a recombinant adenovirus encoding hemagglutinin (HA)-epitope-tagged Gab1 and expressed this protein in PC12 cells. HA-Gab1 was constitutively tyrosine-phosphorylated in PC12 cells and induced the phosphorylation of Akt/protein kinase B and p44/42 mitogen-activated protein kinase. HA-Gab1-stimulated a 10-fold increase in neurite outgrowth in the absence of NGF and a 5-fold increase in NGF-induced neurite outgrowth. HA-Gab1 also stimulated DNA synthesis and caused NGF-independent survival in PC12 cells. Finally, we found that HA-Gab1-induced neuritogenesis was completely suppressed by pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activity and 50% suppressed by inhibition of PI3K activity. In contrast, HA-Gab1-stimulated cell survival was efficiently suppressed only by inhibition of both PI3K and MEK activities. These results indicate that Gab1 is capable of mediating differentiation, DNA synthesis, and cell survival and uses both PI3K and MEK signaling pathways to achieve its effects.  相似文献   

18.
The Rho family of small GTPases has been implicated in cytoskeletal reorganization and subsequent morphological changes in various cell types. Among them, Rac and Cdc42 have been shown to be involved in neurite outgrowth in neuronal cells. In this study, we examined the role of RhoG, another member of Rho family GTPases, in nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Expression of wild-type RhoG in PC12 cells induced neurite outgrowth in the absence of NGF, and the morphology of wild-type RhoG-expressing cells was similar to that of NGF-differentiated cells. Constitutively active RhoG-transfected cells extended short neurites but developed large lamellipodial or filopodial structures at the tips of neurites. RhoG-induced neurite outgrowth was inhibited by coexpression with dominant-negative Rac1 or Cdc42. In addition, expression of constitutively active RhoG elevated endogenous Rac1 and Cdc42 activities. We also found that the NGF-induced neurite outgrowth was enhanced by expression of wild-type RhoG whereas expression of dominant-negative RhoG suppressed the neurite outgrowth. Furthermore, constitutively active Ras-induced neurite outgrowth was also suppressed by dominant-negative RhoG. Taken together, these results suggest that RhoG is a key regulator in NGF-induced neurite outgrowth, acting downstream of Ras and upstream of Rac1 and Cdc42 in PC12 cells.  相似文献   

19.
Yuan Y  Gao X  Guo N  Zhang H  Xie Z  Jin M  Li B  Yu L  Jing N 《Cell research》2007,17(11):919-932
Sac domain-containing proteins belong to a newly identified family of phosphoinositide phosphatases (the PIPPase family). Despite well-characterized enzymatic activity, the biological functions of this mammalian Sac domain PIPPase family remain largely unknown. We identified a novel Sac domain-containing protein, rat Sac3 (rSac3), which is widely expressed in various tissues and localized to the endoplasmic reticulum, Golgi complex and recycling endosomes, rSac3 displays PIPPase activity with PI(3)P, PI(4)P and PI(3,5)P2 as substrates in vitro, and a mutation in the catalytic core of the Sac domain abolishes its enzymatic activity. The expression of rSac3 is upregulated during nerve growth factor (NGF)-stimulated PC 12 cell neuronal differentiation, and overexpression of this protein promotes neurite outgrowth in PC 12 cells. Conversely, inhibition ofrSac3 expression by antisense oligonucleotides reduces neurite outgrowth of NGF- stimulated PC 12 cells, and the active site mutation of rSac3 eliminates its neurite-outgrowth-promoting activity. These results indicate that rSac3 promotes neurite outgrowth in differentiating neurons through its PIPPase activity, suggesting that Sac domain PIPPase proteins may participate in forward membrane trafficking from the endoplasmic reticulum and Golgi complex to the plasma membrane, and may function as regulators of this crucial process of neuronal cell growth and differentiation.[第一段]  相似文献   

20.
H Tamura  S Ohkuma 《FEBS letters》1991,294(1-2):51-55
Bafilomycin A1, a selective inhibitor of vacuolar H(+)-ATPase, induced neurite outgrowth of PC12 cells dose- and time-dependently: more than 50% of the cells extended neurite-like spikes after 24 h treatment with 100 nM bafilomycin A1. Its dose-response ran roughly parallel to that of a bafilomycin A1-induced lysosomal pH increase. It was inhibited by LiCl, an inhibitor of the phosphorylation of microtubule-associated proteins and, like nerve growth factor (NGF)-induced neurite outgrowth, it was also inhibited by cycloheximide and actinomycin D. But, unlike the NGF-effect, it was not associated with rapid induction of c-fos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号