首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intracellular calcium and calmodulin involvement in protoplast fusion   总被引:3,自引:3,他引:0  
(45)Ca(2+) uptake was compared between fusogenic and nonfusogenic Daucus carota L. protoplasts. Fusogenic protoplasts took 10 minutes to reach calcium equilibrium compared to 5 minutes in the nonfusogenic protoplasts. Intracellular stores of calcium were manipulated by isolating protoplasts in different calcium regimes. Lowering of intracellular calcium lowered fusion potential, while raising intracellular stores of calcium enhanced fusion potential. Regardless of the amount of calcium sequestered in a store, mobilization with A23187 increased fusion levels within 10 minutes. Calmodulin antagonists were potent inhibitors of protoplast fusion. This inhibition was obtained by treating cells with the calmodulin antagonists during protoplast isolation. A23187, however, only allowed a partial recovery from this inhibition, indicating that calcium flux alone was not sufficient for maximum fusion potential. On the basis of the evidence presented, we propose that calcium fluxes during protoplast isolation activate a calmodulin-mediated biochemical process that is necessary for the formation or maintenance of a fusion permissive state.  相似文献   

2.
WANG  HONGQINGZHANG 《Cell research》1992,2(2):119-128
By using Hoechst 33342,rabbit anti calmodulin antibody,FITC-labeled goat anti rabbit IgG and SR101(sulfo rhodamine 101)simultaneously to stain individual normal and transformed cells,the microspectrophotometric analysis demonstrated that 3 markers which represented the nucleus,calmodulin and total protein respectively,could be recognized in individualj cells without interference,The phase of the cell cycle was determined by DNA content(Hoechst 33342),We found that in transformed cells(NIH3T3) tsRSV-LA90,cultured at 33℃ and transformed C3H10T1/2 Cells),the ration of calmodulin to total protein (based on the phases of cell cycle)was higher than that in normal cells (NIH3T3 tsRSV-LA90 cells,cultured at 39℃ and C3H10T1/2 cells)in every cell cycle phase,This ration increased obviously only from G1 to S phase in either normal or transformed cells.The results showed that calmodulinreally increased during the transformation,and its increase was specific.In the meantime when cells proceeded from G1 to S.the intraceollular calmodulin content also increased specifically.  相似文献   

3.
We investigated the intracellular distribution of the mRNAs corresponding to the three non-allelic CaM genes in cultured hippocampal cells by in situ hybridization with digoxigenin-labeled gene-specific riboprobes. In neurons the perikaryon was heavily stained and strong dendritic mRNA targeting was detected for all three CaM genes. The color labeling exhibited a punctate distribution, suggesting that CaM mRNAs are transported in RNA granules. Immunocytochemistry for S100 demonstrated that glial cells express CaM mRNAs at a very low level. A minority of the cultured cells were negative for either labeling.  相似文献   

4.
5.
Many calcium-mediated effects in mammalian cells may be activated by calcium-calmodulin stimulated enzymes. These effects are inhibited by various antidepressant drugs which bind to and inactivate calmodulin. In the current study, calmodulin was identified by affinity chromatography and gel electrophoresis in the cytoplasm of dispersed rat pancreatic acinar cells. Its role in enzyme secretion was assessed by evaluating the effects of various antidepressants drugs on the enzyme secretory process. Chlorpromazine, trifluoperazine, thioridazine, chlorprothixene and amitriptyline inhibited amylase secretion stimulated by carbachol, A-23187, and cholecystokinin-pancreozymin but not that elicited by dibutyryl cyclic AMP secretin or vasoactive intestinal peptide (VIP). Haloperidol, sulpiride, phenobarbital, and ethanol were without effect on secretagogue-stimulated enzyme release. Only those agents which blocked secretion also inhibited 45Ca release stimulated by carbachol from isotope preloaded cells. The data suggest that calmodulin may have a functional role in pancreatic enzyme secretion.  相似文献   

6.
7.
Jaren OR  Kranz JK  Sorensen BR  Wand AJ  Shea MA 《Biochemistry》2002,41(48):14158-14166
Calmodulin (CaM) is an intracellular calcium-binding protein essential for many pathways in eukaryotic signal transduction. Although a structure of Ca(2+)-saturated Paramecium CaM at 1.0 A resolution (1EXR.pdb) provides the highest level of detail about side-chain orientations in CaM, information about an end state alone cannot explain driving forces for the transitions that occur during Ca(2+)-induced conformational switching and why the two domains of CaM are saturated sequentially rather than simultaneously. Recent studies focus attention on the contributions of interdomain linker residues. Electron paramagnetic resonance showed that Ca(2+)-induced structural stabilization of residues 76-81 modulates domain coupling [Qin and Squier (2001) Biophys. J. 81, 2908-2918]. Studies of N-domain fragments of Paramecium CaM showed that residues 76-80 increased thermostability of the N-domain but lowered the Ca(2+) affinity of sites I and II [Sorensen et al. (2002) Biochemistry 41, 15-20]. To probe domain coupling during Ca(2+) binding, we have used (1)H-(15)N HSQC NMR to monitor more than 40 residues in Paramecium CaM. The titrations demonstrated that residues Glu78 to Glu84 (in the linker and cap of helix E) underwent sequential phases of conformational change. Initially, they changed in volume (slow exchange) as sites III and IV titrated, and subsequently, they changed in frequency (fast exchange) as sites I and II titrated. These studies provide evidence for Ca(2+)-dependent communication between the domains, demonstrating that spatially distant residues respond to Ca(2+) binding at sites I and II in the N-domain of CaM.  相似文献   

8.
Boschek CB  Squier TC  Bigelow DJ 《Biochemistry》2007,46(15):4580-4588
Binding of calcium to CaM exposes clefts in both N- and C-domains to promote their cooperative association with a diverse array of target proteins, functioning to relay the calcium signal regulating cellular metabolism. To clarify relationships between the calcium-dependent activation of individual domains and interdomain structural transitions associated with productive binding to target proteins, we have utilized three engineered CaM mutants that were covalently labeled with N-(1-pyrene) maleimide at introduced cysteines in the C- and N-domains, i.e., T110C (PyC-CaM), T34C (PyN-CaM), and T34C/T110C (Py2-CaM). These sites were designed to detect known conformers of CaM such that upon association with classical CaM-binding sequences, the pyrenes in Py2-CaM are brought close together, resulting in excimer formation. Complementary measurements of calcium-dependent enhancements of monomer fluorescence of PyC-CaM and PyN-CaM permit a determination of the calcium-dependent activation of individual domains and indicate the sequential calcium occupancy of the C- and N-terminal domains, with full saturation at 7.0 and 300 microM calcium, respectively. Substantial amounts of excimer formation are observed for apo-CaM prior to peptide association, indicating that interdomain interactions occur in solution. Calcium binding results in a large and highly cooperative reduction in the level of excimer formation; its calcium dependence coincides with the occupancy of C-terminal sites. These results indicate that interdomain interactions between the opposing domains of CaM occur in solution and that the occupancy of C-terminal calcium binding sites is necessary for the structural coupling between the opposing domains associated with the stabilization of the interdomain linker to enhance target protein binding.  相似文献   

9.
Tunneling nanotubes (TNTs) are nanoscaled, F-actin containing membrane tubes that connect cells over several cell diameters. They facilitate the intercellular exchange of diverse components ranging from small molecules to organelles and pathogens. In conjunction with recent findings that TNT-like structures exist in tissue, they are expected to have important implications in cell-to-cell communication. In this review we will focus on a new function of TNTs, namely the transfer of electrical signals between remote cells. This electrical coupling is not only determined by the biophysical properties of the TNT, but depends on the presence of connexons interposed at the membrane interface between TNT and the connected cell. Specific features of this coupling are compared to conventional gap junction communication. Finally, we will discuss possible down-stream signaling pathways of this electrical coupling in the recipient cells and their putative effects on different physiological activities. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

10.
The palladium-catalyzed coupling of various 17-iodo-Δ16 steroids (17-iodo-androst-16-ene, 17-iodo-4-methyl-4-aza-androst-16-en-3-one, and 17-iodo-4-aza-androst-16-en-3-one) with dialkyl phosphites (dimethyl phosphite, diethyl phosphite, and diisopropyl phosphite) was examined in detail. The only successful condition for homogeneous coupling involved carrying out the reaction in the absence of any solvents. A large excess of dialkyl phosphite was used, which means that the phosphite itself acted as a solvent. Eight new androst-16-ene derivatives with phosphonate groups at C-17 were synthesized and characterized. These steroids are of pharmacological interest as potential 5-reductase inhibitors. Under the same conditions, methylation of lactam NH was observed using dimethyl phosphite.  相似文献   

11.
Pre-alpha-inhibitor is a serum protein consisting of two polypeptides, the heavy chain and bikunin, covalently linked through an ester bond between the chondroitin sulfate chain of bikunin and the alpha-carboxyl group of the carboxyl-terminal residue of the heavy chain. The heavy chain is synthesized with a carboxyl-terminal extension, which is cleaved off just before the link to bikunin is formed. Our earlier studies indicate that this extension mediates the cleavage, and we have now found that a short segment on the amino-terminal side of the cleavage site is also required for the reaction. Furthermore, we previously showed that coexpression of the heavy chain precursor and bikunin in COS-1 cells leads to linkage, and we have now used this system to identify a His residue in the carboxyl-terminal extension that is specifically required for the intracellular coupling of the two proteins. In addition, we have shown that another chondroitin sulfate-containing protein, decorin, will also form a complex with the heavy chain, as will free chondroitin sulfate chains. These results suggest that in vivo there might be other, as yet unknown, chondroitin sulfate-containing polypeptides linked to the heavy chain.  相似文献   

12.
Summary Intracellular pH (pH i ) and intracellular Ca2+ ([Ca2+] i ) were determined inChironomus salivary gland cells under various conditions of induced uncoupling. pH i was measured with aThomas-type microelectrode, changes in [Ca2+] i and their spatial distribution inside the cell were determined with the aid of intracellularly injected aequorin and an image intensifier-TV system, and cell-to-cell coupling was measured electrically. Treatments with NaCN (5mm), DNP (1.2mm), or ionophore A23187 (2m) caused fall in junctional conductance (uncoupling) that was correlated with [Ca2+] i elevation, as was shown before (Rose & Loewenstein, 1976,J. Membrane Biol. 28:87) but not with changes in pH i : during the uncoupling induced by CN, the pH i (normally 7.5) decreased at most by 0.2 units; during the uncoupling induced by the ionophore, pH i fell by 0.13 or rose by 0.3; and in any one of these three agents' uncouplings, the onset of uncoupling and recovery of coupling were out of phase with the changes in pH i . Intracellular injection of Ca-citrate or Ca-EGTA solutions buffered to pH 7.2 or 7.5 produced uncoupling with little or no pH i change when their free [Ca2+] i was >10–5 m. On the other hand, such a solution at pH 4, buffered to [Ca2+]<10–6 m, lowered pH i to 6.8 but produced no uncoupling. Thus, a decrease in pH i is not necessary for uncoupling in any of these conditions. In fact, uncoupling ensued also during increase in pH i : exposure to NH4HCO3 or withdrawal of propionate following exposure to a propionate-containing medium caused pH i to rise to 8.74, accompanied by [Ca2+] i elevation and uncoupling at pH i >7.8.Cell acidification itself can cause elevation of [Ca2+] i : injection (iontophoresis) of H+ invariably caused [Ca2+] i elevation and uncoupling. These effects were produced also by an application of H+-transporting ionophore Nigericin at extracellular pH 6.5 which caused pH i to fall to 6.8. Exposure to 100% CO2 produced a fall in pH i , associated in 10 out of 25 cases with [Ca2+] i elevation and, invariably, with uncoupling. The absence of a demonstrable [Ca2+] i elevation in a proportion of these trials is attributable to depression in Ca2+-measuring sensitivity; inin vivo tests, detection sensitivity for [Ca2+] i by aequorin was found to be depressed by the CO2 treatment. Upon CO2 washout, pH i and coupling recovered, but onset of recoupling set in at pH i as low as 6.32–6.88, generally lower than at the pH i at which uncoupling had set in. Exposure to 5% CO2 lowered pH i on the average by 0.3 and depressed coupling (in initially poorly coupled cells). After CO2-washout, pH i and coupling recovered. During the recovery phase [Ca2+] i was elevated, an elevation associated with renewed uncoupling or decrease in rate of recoupling. The results are discussed in connection with possible regulatory mechanisms of junctional permeability.  相似文献   

13.
14.
Summary In many cell systems, the permeability of membrane junctions is modulated by the cytoplasmic level of free Ca++. To examine whether the calcium-dependent regulatory protein calmodulin is involved in this process, the ability of anticalmodulin drugs to influence the cell-to-cell passage of injected current and an organic tracer was tested using standard intracellular glass microelectrode techniques. Several antipsychotics and local anesthetics were found to block junctional communication in the epidermis of the beetleTenebrio molitor. Treatment of the epidermis with chlorpromazine (0.25 mM) raised intercellular resistance two- to threefold within 20 to 25 min; cell-to-cell passage of electrical current was abolished within 41±5 min. Loss of electrotonic coupling was accompanied by a block in the cell-to-cell movement of the organic tracer carboxyfluorescein. The reaction is fully reversible, with normal electrotonic coupling being restored within 2 to 4 hr. Other antipsychotics and local anesthetics had similar effects on cell coupling. The order of potency found was: trifluoperazine>thioridazine> d-butaclamol>chlorprothixine=chlorpromazine> l-butaclamol> dibucaine>tetracaine. The relative uncoupling potencies of these drugs correlate well with their known ability to inhibit calmodulin-dependent phosphodiesterase activity. Other anesthetic compounds, procaine and pentobarbital, did not block cell-to-cell communication. Altering the extracellular Ca++ concentration did not affect the rate of uncoupling by antipsychotics, while chelation of extracellular Ca++ with EGTA raised electrotonic coupling. The effect of three metabolic inhibitors on coupling was also examined. Iodoacetate uncoupled the epidermal cells while DNP and cyanide did not. These results are discussed in terms of possible mechanisms by which calmodulin may control junctional communication in this tissue.  相似文献   

15.
16.
17.
H Sun  D Yin  T C Squier 《Biochemistry》1999,38(38):12266-12279
We have used fluorescence spectroscopy to investigate the average structure and extent of conformational heterogeneity associated with the central helix in calmodulin (CaM), a sequence that contributes to calcium binding sites 2 and 3 and connects the amino- and carboxyl-terminal globular domains. Using site-directed mutagenesis, a double mutant was constructed involving conservative substitution of Tyr(99) --> Trp(99) and Leu(69) --> Cys(69) with no significant effect on the secondary structure of CaM. These mutation sites are at opposite ends of the central helix. Trp(99) acts as a fluorescence resonance energy transfer (FRET) donor in distance measurements of the conformation of the central helix. Cys(69) provides a reactive group for the covalent attachment of the FRET acceptor 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS). AEDANS-modified CaM fully activates the plasma membrane (PM) Ca-ATPase, indicating that the native structure is retained following site-directed mutagenesis and chemical modification. We find that the average spatial separation between Trp(99) and AEDANS covalently bound to Cys(69) decreases by approximately 7 +/- 2 A upon calcium binding. However, irrespective of calcium binding, there is little change in the conformational heterogeneity associated with the central helix under physiologically relevant conditions (i.e., pH 7.5, 0.1 M KCl). These results indicate that calcium activation alters the spatial arrangement of the opposing globular domains between two defined conformations. In contrast, under conditions of low ionic strength or pH the structure of CaM is altered and the conformational heterogeneity of the central helix is decreased upon calcium activation. These results suggest the presence of important ionizable groups that affect the structure of the central helix, which may play an important role in mediating the ability of CaM to rapidly bind and activate target proteins.  相似文献   

18.
19.
We describe the synthesis and characterization of a 5′ conjugate between a 2′-O-Me phosphorothioate antisense oligonucleotide and a bivalent RGD (arginine–glycine–aspartic acid) peptide that is a high-affinity ligand for the αvβ3 integrin. We used αvβ3-positive melanoma cells transfected with a reporter comprised of the firefly luciferase gene interrupted by an abnormally spliced intron. Intranuclear delivery of a specific antisense oligonucleotide (termed 623) corrects splicing and allows luciferase expression in these cells. The RGD–623 conjugate or a cationic lipid-623 complex produced significant increases in luciferase expression, while ‘free’ 623 did not. However, the kinetics of luciferase expression was distinct; the RGD–623 conjugate produced a gradual increase followed by a gradual decline, while the cationic lipid-623 complex caused a rapid increase followed by a monotonic decline. The subcellular distribution of the oligonucleotide delivered using cationic lipids included both cytoplasmic vesicles and the nucleus, while the RGD–623 conjugate was primarily found in cytoplasmic vesicles that partially co-localized with a marker for caveolae. Both the cellular uptake and the biological effect of the RGD–623 conjugate were blocked by excess RGD peptide. These observations suggest that the bivalent RGD peptide–oligonucleotide conjugate enters cells via a process of receptor-mediated endocytosis mediated by the αvβ3 integrin.  相似文献   

20.
Intracellular delivery of nanometric DNA particles via the folate receptor   总被引:2,自引:0,他引:2  
The size of condensed DNA particles is a key determinant for both diffusion to target cells in vivo and intracellular trafficking. The smallest complexes are obtained when each DNA molecule collapses individually. This was achieved using a designed cationic thiol-detergent, tetradecyl-cysteinyl-ornithine (C(14)COrn). The resulting particles were subsequently stabilized by air-induced dimerization of the detergent into a disulfide lipid on the DNA template. Particles are anionic (zeta potential = -45 mV), and their size (30 nm) corresponds to the volume of a single plasmid DNA molecule. The electrophoretic mobility of the condensed DNA, though quasi-neutralized, was found higher than that of the extended DNA. Moreover, the dimerized (C(14)COrn)(2) lipid was found to be an efficient transfection reagent for various cell lines. In an attempt to achieve extended circulation times and to target tumors by systemic delivery, we have coated the particles with PEG-folate residues. Plasmid DNA was condensed into monomolecular particles as described above and coated by simple mixing with DPPE-PEG-folate. Physicochemical measurements showed particles coated with 2% of DPPE-PEG(3400)-folate remain monomolecular and are stable in the cell-culture medium. Caveolae-mediated cell entry was demonstrated by ligand-dependence, by competition with excess folic acid as well as by confocal microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号