首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vesicular monoamine transporter 2 (VMAT2) plays a pivotal role in regulating the size of vesicular and cytosolic dopamine (DA) storage pools within the CNS, and can thus influence extracellular DA neurotransmission. Transgenic mice have been generated with a dramatically reduced (by approximately 95%) expression of the VMAT2 gene which, unlike complete knockout lines, survive into adulthood. We compared the pre-synaptic regulation of both impulse-dependent (exocytotic) and carrier-mediated (via reversal of the DA transporter, DAT) DA release in the dorsolateral caudate putamen (CPu) of striatal slices derived from adult homozygous VMAT2 mutant and wild-type mice using fast cyclic voltammetry. Impulse-dependent DA release, evoked by a single electrical pulse, was lower in homozygous (116 nm) than wild-type mice (351 nm) indicating smaller vesicular DA stores, an observation supported by the evanescent effect of amfonelic acid (300 nm) in homozygous mice. Amphetamine (2 microm) increased extracellular DA via DAT reversal in both wild-type (by 459 nm) and VMAT2 mutant (by 168 nm, p < 0.01 vs. wild-type) mice. In both cases, the effect was blocked by the DAT inhibitor GBR12935 (1 microm). Simultaneously, amphetamine decreased impulse-dependent DA release, albeit less in homozygous (by 55%) than in wild-type (by 78%) mice. In wild-types, this decrement was largely reversed by GBR12935 but not by the D2/D3 autoreceptor antagonist (-)sulpiride (1 microm). Conversely, in homozygous VMAT2 mutant mice, it was attenuated by (-)sulpiride but not GBR12935. The D2/D3 receptor agonist quinpirole inhibited impulse-dependent DA release with a lower EC50 value in homozygous mice (12 nm) compared with wild-types (34 nm), indicating the compensatory presence of functionally supersensitive release-regulating autoreceptors. However, analysis of DA reuptake kinetics obtained in the absence and presence of DAT blockade (by cocaine and amfonelic acid) revealed only minor differences in DAT functionality. These results demonstrate that impaired vesicular DA storage constrains extracellular DA levels in the dorsolateral CPu whether induced by either impulse-dependent or carrier-mediated mechanisms and that the relative importance of the DAT and terminal autoreceptors as control mechanisms in the actions of amphetamine are reversed in VMAT2 mutant mice.  相似文献   

2.
Dopamine (DA) causes a dose-dependent increase in the frequency of motor neuron bursts [virtual ventilation (fR)] produced by deafferented crab ventilatory pattern generators (CPGv). Domperidone, a D2-specific DA antagonist, by itself reversibly depresses fR and also blocks the stimulatory effects of DA. Serotonin (5HT) has no direct effects on this CPGv. Nicotine also causes dramatic dose-dependent increases in the frequency of motor bursts from the CPGv. The action is triphasic, beginning with an initial reversal of burst pattern typical of reversed-mode ventilation, followed by a 2- to 3-min period of depression and then a long period of elevated burst rate. Acetylcholine chloride (ACh) alone is ineffective, but in the presence of eserine is moderately stimulatory. The inhibitory effects of nicotine are only partially blocked by curare. The excitatory action of nicotine is blocked by prior perfusion of domperidone, but not by SKF-83566.HCl, a D1-specific DA antagonist. SKF-83566 had no effects on the ongoing pattern of firing. These observations support the hypothesis that dopaminergic pathways are involved in the maintenance of the CPGv rhythm and that the acceleratory effects of nicotine may involve release of DA either directly or via stimulation of atypical ACh receptors at intraganglionic sites.  相似文献   

3.
Dopamine (DA) causes a dose-dependent increase in the frequency of motor neuron bursts [virtual ventilation (fR)] produced by deafferented crab ventilatory pattern generators (CPGv). Domperidone, a D2-specific DA antagonist, by itself reversibly depresses fR and also blocks the stimulatory effects of DA. Serotonin (5HT) has no direct effects on this CPGv. Nicotine also causes dramatic dose-dependent increases in the frequency of motor bursts from the CPGv. The action is triphasic, beginning with an initial reversal of burst pattern typical of reversed-mode ventilation, followed by a 2- to 3-min period of depression and then a long period of elevated burst rate. Acetylcholine chloride (ACh) alone is ineffective, but in the presence of eserine is moderately stimulatory. The inhibitory effects of nicotine are only partially blocked by curare. The excitatory action of nicotine is blocked by prior perfusion of domperidone, but not by SKF-83566.HCl, a D1-specific DA antagonist. SKF-83566 had no effects on the ongoing pattern of firing. These observations support the hypothesis that dopaminergic pathways are involved in the maintenance of the CPGv rhythm and that the acceleratory effects of nicotine may involve release of DA either directly or via stimulation of atypical ACh receptors at intraganglionic sites. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Dopamine D1 receptor (D1R) ligands may directly interact with the NMDA receptor (NMDAR), but detailed knowledge about this effect is lacking. Here we identify D1R ligands that directly modulate NMDARs and examine the contributions of NR2A and NR2B subunits to these interactions. Binding of the open channel blocker [(3)H]MK-801 in membrane preparations from rat- and mouse brain was used as a biochemical measure of the functional state of the NMDAR channel. We show that both D1R agonist A-68930 and dopamine receptor D2 antagonist haloperidol can decrease [(3)H]MK-801 binding with increased potency in membranes from the NR2A(-/-) mice (i.e. in membranes containing NR2B only), as compared to the inhibition obtained in wild-type membranes. Further, a wide range of D1R agonists such as A-68930, SKF-83959, SKF-83822, SKF-38393 and dihydrexidine were able to decrease [(3)H]MK-801 binding, all showing half maximal inhibitory concentrations ~20 μM, and with significant effects occurring at or above 1 μM. With membranes from D1R(-/-) mice, we demonstrate that these effects occurred through a D1R-independent mechanism. Our results demonstrate that dopamine receptor ligands can selectively influence NR2B containing NMDARs, and we characterize direct inhibitory NMDAR effects by different D1R ligands.  相似文献   

5.
The effects on locomotor response to cocaine challenge, acquisition of cocaine conditioned place preference and cocaine-induced dopamine (DA) release in nucleus accumbens and ventral tegmental area by the non-specific corticotropin-releasing factor (CRF) receptors antagonist alpha-helical CRF, the selective CRF receptor subtype 1 antagonist CP-154,526 and the selective CRF receptor subtype 2 antagonist anti-sauvagine-30 (AS-30) were investigated in rats. Both alpha-helical CRF (10 microg, i.c.v.) and CP-154,526 (3 microg, i.c.v.) decreased the cocaine-induced distance travelled, whereas AS-30 (3 microg, i.c.v.) did not show such an effect. The CRF receptor antagonists also have significant effects on stereotype counts induced by cocaine injection, in which the alpha-helical CRF or CP-154,526 but not AS-30 did significantly reduce the stereotype counts. alpha-Helical CRF (10 microg) prior to each injection of cocaine blocked cocaine conditioned place preference with no significant difference observed in the time spent in the drug-paired side between post- and pre-training and both 1 and 3 microg CP-154,526 also had significant inhibitory effects on cocaine-induced place preference. However, pre-treatment with an i.c.v. infusion of AS-30 (1 or 3 microg) prior to each injection of cocaine did not affect the acquisition of conditioned place preference. The alpha-helical CRF and CP-154,526 reduced extracellular DA levels of nucleus accumbens and ventral tegmental area in response to the injection of cocaine. However, both alpha-helical CRF and CP-154,526 did not modify extracellular DA levels under basal conditions. In contrast, the i.c.v. infusion of AS-30 had no effects on either the basal DA or the cocaine-induced increase in DA release in nucleus accumbens and ventral tegmental area. These findings demonstrate that activation of the CRF receptor is involved in behavioral and neurochemical effects of cocaine challenge and cocaine reward and that the role of CRF receptor subtypes 1 and 2 in cocaine-induced locomotion, reward and DA release is not identical. The CRF receptor subtype 1 is largely responsible for the action of the CRF system on cocaine locomotion and reward. These results suggest that the CRF receptor antagonist, particularly the CRF receptor subtype 1 antagonist, might be of some value in the treatment of cocaine addiction and cocaine-related behavioral disorders.  相似文献   

6.
The objective of the present study was to examine the effects of perfusion of dopamine (DA) D1- and D2-like receptor agonists in the nucleus accumbens (ACB) on the long-loop negative feedback regulation of mesolimbic somatodendritic DA release in the ventral tegmental area (VTA) of Wistar rats employing ipsilateral dual probe in vivo microdialysis. Perfusion of the ACB for 60 min with the D1-like receptor agonist SKF 38393 (SKF, 1-100 microM) dose-dependently reduced the extracellular levels of DA in the ACB, whereas the extracellular levels of DA in the VTA were not changed. Similarly, application of the D2-like receptor agonist quinpirole (Quin, 1-100 microM) through the microdialysis probe in the ACB reduced the extracellular levels of DA in the ACB in a concentration-dependent manner, whereas extracellular levels of DA in the VTA were not altered. Co-application of SKF (100 microM) and Quin (100 microM) produced concomitant reductions in the extracellular levels of DA in the ACB and VTA. The reduction in extracellular levels of DA in the ACB and VTA produced by co-infusion of SKF and Quin was reversed in the presence of either 100 microM SCH 23390 (D1-like antagonist) or 100 microM sulpiride (D2-like antagonist). Overall, the results suggest that (a) activation of dopamine D1- or D2-like receptors can independently regulate local terminal DA release in the ACB, whereas stimulation of both subtypes is required for activation of the negative feedback pathway to the VTA.  相似文献   

7.
The use of heterologous expression systems for studying dopamine (DA) transporter (DAT) function has provided important information corroborating and complementing in situ obtained knowledge. Preliminary experiments with human embryonic kidney cells (HEK293) heterologously expressing varying amounts of DAT suggested fluctuations in the potency of cocaine in inhibiting DA uptake and led to the present systematic assessment of the impact of the density of DAT on its function. Transiently expressing intact HEK293 cells, transfected with increasing amounts of DAT cDNA, displayed increasing levels of surface DAT, binding of the cocaine analog [(3)H]2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane ([(3)H]CFT), and uptake of [(3)H]DA, [(3)H]N-methyl-4-phenylpyridinium ([(3)H]MPP(+)), [(3)H]norepinephrine, and [(3)H]serotonin. However, the amount of DAT cDNA and the DAT expression level required to produce 50% of maximal activity was threefold higher for CFT binding than for DA uptake. Increased DAT expression was accompanied by weakened potency in inhibiting [(3)H]DA uptake for cocaine, CFT, benztropine, and its analog JHW025, GBR 12909 and mazindol; their potency in inhibiting [(3)H]CFT binding was unaffected. Inhibition of uptake by the substrates DA, m-tyramine, d-amphetamine, or MPP(+) was also unaffected. Increasing DAT in stably expressing HEK293 cells by stimulation of gene expression with sodium butyrate also decreased the uptake inhibitory potency of a number of the above blockers without affecting the interaction between substrates and DAT. The present results prompt discussion of models explaining how factors regulating DAT expression at the plasma membrane can regulate DAT function and pharmacology.  相似文献   

8.
A series of cis and trans 3beta-aryl-2-carbomethoxy-6-azabicyclo[3.2.1]octanes, with different substitution at the para-position of the aryl group, were synthesized and examined for reuptake inhibition at the dopamine transporter (DAT). The potency for inhibition of DA reuptake was compared with that of cocaine to determine the significance of the replacement of the 8-azabicyclo[3.2.1]octane (tropane nucleus), displayed in cocaine, for the 6-azabicyclo[3.2.1]octane (normorphan framework). This bicyclic core structure constitutes a novel chemical scaffold in DAT inhibitor design, which may provide new insights into the 3D structure of the DAT and its interaction with cocaine and DA. Among these compounds, the trans-amine series 8 were the most potent ligands at the DAT. In particular, the normorphan analogue 8c (bearing a p-chloro substituent at the beta-aryl group, IC(50)=452 nM) displayed a potency that is in the same range as cocaine (IC(50)=459 nM) itself.  相似文献   

9.
The microdialysis technique was utilized to study the local effects of D1 and D2 family type dopamine (DA) receptor (R) ligands on the in vivo release of endogenous glutamate (GLU) and aspartate (ASP) from rat substantia nigra (SN). Addition to the dialysis perfusion solution of either D1-R and D2-R agonists, such as SKF-38393 (50 and 100 M) and Quinpirole (5 and 10 M), resulted in dose-dependent increases in extracellular concentrations of GLU and ASP, respectively. The SKF-38393 and Quinpirole-induced effects were reduced by SCH-23390 (0.5 M), a D1-R antagonist, and by Spiperone (1.0 M), a D2-R antagonist, respectively. However, SCH-23390 and Spiperone did increase GLU and ASP extracellular concentrations. Local infusion with Tetrodotoxin (TTX) (1.0 M), a blocker of voltage-dependent Na+ channels, increased basal extracellular levels of GLU. In addition, co-infusion of TTX and SKF-38393 evoked increases in extracellular GLU levels higher than those observed after SKF-38393 alone. Finally, chemical lesions of nigral DA cells with 6-OH-DA increased the basal extracellular levels of GLU. It is proposed that the release of GLU and ASP from SN may be regulated by D1- and D2-receptors present in this basal ganglia structure. In addition, part of the D1 receptors present in SN might be located presynaptically on GLU-containing nerve endings.  相似文献   

10.
The objective of this study was to examine the role of dopamine (DA) receptors in the nucleus accumbens (ACB) in controlling feedback regulation of mesolimbic somatodendritic DA release in the ventral tegmental area (VTA) of Wistar rats using ipsilateral dual-probe in vivo microdialysis. Perfusion of the ACB for 60 min with the DA uptake inhibitor GBR-12909 (10-1,000 microM) or nomifensine (10-1,000 microM) dose-dependently increased the extracellular levels of DA in ACB and concomitantly reduced the extracellular levels of DA in the VTA. Coperfusion of 100 microM nomifensine with either 100 microM SCH-23390 (SCH), a D1 antagonist, or 100 microM sulpiride (SUL), a D2 receptor antagonist, produced either an additive (for SCH) or a synergistic (for SUL) elevation in the extracellular levels of DA in the ACB, whereas the reduction in the extracellular levels of DA in the VTA produced by nomifensine alone was completely prevented by addition of either antagonist. Application of 100 microM SCH or SUL alone through the microdialysis probe in the ACB increased the extracellular levels of DA in the ACB, whereas the extracellular levels of DA in the VTA remained unchanged. Overall, the results suggest that (a) increasing the synaptic levels of DA in the ACB activates a long-loop negative feedback pathway to the VTA involving both D1 and D2 postsynaptic receptors and (b) terminal DA release within the ACB is regulated directly by D2 autoreceptors and may be indirectly regulated by D1 receptors, possibly on interneurons and/or through postsynaptic inhibition of the negative feedback loop.  相似文献   

11.
Spontaneous and/or stimulated neural activity of the nigrostriatal dopamine (DA) pathway makes amines run out from the neurons. This DA dynamic follows a rather complex path, running in or out the terminals, and flushing or diffusing into the extracellular space. The location of this leakage is not limited to the axon terminals; it also occurs from the cell bodies and dendrites. This molecular release mechanism was, for a long time, considered as being produced, in part, by the exocytosis of previously stored vesicles. The DA carrier protein (DAT, DA transporter) embedded in the DA cell membrane is known to clear previously released amines through an inward DA influx. The DAT also appears to be an active vector of amine release. Particular local conditions and the presence of numerous psychostimulant substances are able to trigger an outward efflux of DA through the DAT. This process, delivering slowly large amounts of amine could play a major regulatory role in extracellular DA homeostasis.  相似文献   

12.
Methamphetamine (METH) causes release of stored intracellular dopamine (DA). We explored the interactions of METH with the recombinant human vesicular monoamine (hVMAT2) and/or human DA transporters (hDAT) in transfected mammalian (HEK293) cells and compared the findings with those for DA. In 'static' release assays at 37 degrees C, less than 20% of pre-loaded [(3)H]DA was lost after 60 min, while nearly 80% of pre-loaded [(3)H]METH was lost at 37 degrees C under non-stimulated conditions. Results obtained by measuring substrate release using a superfusion apparatus revealed an even greater difference in substrate efflux. At pH 7.4, nearly all of the pre-loaded [(3)H]METH was lost after just 6 min, compared with the loss of 70-80% of pre-loaded [(3)H]DA (depending on cell type) after superfusion for 32 min. Increasing the extracellular pH from 7.4 to 8.6 had opposite effects on [(3)H]DA and [(3)H]METH retention. At pH 8.6, [(3)H]METH was retained more effectively by both hDAT and hDAT-hVMAT2 cells, compared with results obtained at extracellular pH 7.4. [(3)H]DA, however, was more effectively retained at pH 7.4 than at pH 8.6. These data suggest that DA and METH interact differently with the DAT and VMAT2, and require different H(+) concentrations to exert their effects.  相似文献   

13.
High doses of amphetamine (AMPH) are thought to disrupt normal patterns of action potential-dependent dopaminergic neurotransmission by depleting vesicular stores of dopamine (DA) and inducing robust non-exocytotic DA release or efflux via dopamine transporter (DAT) reversal. However, these cardinal AMPH actions have been difficult to establish definitively in vivo. Here, we use fast-scan cyclic voltammetry (FSCV) in the urethane-anesthetized rat to evaluate the effects of 10 and 20 mg/kg AMPH on vesicular DA release and DAT function in dorsal and ventral striata. An equivalent high dose of cocaine (40 mg/kg) was also examined for comparison to psychostimulants acting preferentially by DAT inhibition. Parameters describing exocytotic DA release and neuronal DA uptake were determined from dynamic DA signals evoked by mild electrical stimulation previously established to be reinforcing. High-sensitivity FSCV with nanomolar detection was used to monitor changes in the background voltammetric signal as an index of DA efflux. Both doses of AMPH and cocaine markedly elevated evoked DA levels over the entire 2-h time course in the dorsal and ventral striatum. These increases were mediated by augmented vesicular DA release and diminished DA uptake typically acting concurrently. AMPH, but not cocaine, induced a slow, DA-like rise in some baseline recordings. However, this effect was highly variable in amplitude and duration, modest, and generally not present at all. These data thus describe a mechanistically similar activation of action potential-dependent dopaminergic neurotransmission by AMPH and cocaine in vivo. Moreover, DA efflux appears to be a unique, but secondary, AMPH action.  相似文献   

14.
Abstract : Presynaptic D2 dopamine (DA) autoreceptors, which are well known to modulate DA release, have recently been shown to regulate DA transporter (DAT) activity. To examine the effects of D2 DA receptor deficiency on DA release and DAT activity in dorsal striatum, we used mice genetically engineered to have two (D2+/+), one (D2+/-), or no (D2-/-) functional copies of the gene coding for the D2 DA receptor. In vivo microdialysis studies demonstrated that basal and K+-evoked extracellular DA concentrations were similar in all three genotypes. However, using in vivo electrochemistry, the D2-/- mice were found to have decreased DAT function, i.e., clearance of locally applied DA was decreased by 50% relative to that in D2+/+ mice. In D2+/+ mice, but not D2-/- mice, local application of the D2-like receptor antagonist raclopride increased DA signal amplitude, indicating decreased DA clearance. Binding assays with the cocaine analogue [3H]WIN 35,428 showed no genotypic differences in either density or affinity of DAT binding sites in striatum or substantia nigra, indicating that the differences seen in DAT activity were not a result of decreased DAT expression. These results further strengthen the idea that the D2 DA receptor subtype modulates activity of the striatal DAT.  相似文献   

15.
The present study addresses the effect of intracellular Na(+) and membrane potential on the binding of dopamine (DA) to the dopamine transporter (DAT). Perforation of plasma membranes of DAT-expressing cells with gramicidin diminished DA uptake and decreased the potency (increases K(i)) of DA in inhibiting the binding of cocaine analog [(3)H]2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane (CFT). It also compromised the ability of external Na(+) to reduce DA K(i). No substantial effect on DA K(i) was observed upon gramicidin treatment in Na(+)-free buffer, membrane depolarization with high [K(+)](o), or elevation of [Na(+)](i) with monensin under non-depolarizing conditions. Elevation of DA K(i) was greater at more positive potentials when [Na(+)](i) was raised to a similar level, or at higher [Na(+)](i) when the membrane was depolarized to a similar level. In cells expressing D313N DAT, DA K(i) was significantly higher but less sensitive to gramicidin than that in wild-type (WT) cells. In contrast, DA K(i) in cell-free membranes was insensitive to Na(+), gramicidin, and D313N mutation. The data suggest that (i) intracellular Na(+) plays a role in affecting the external access to DA binding sites at DAT on depolarized plasma membranes of cells, and (ii) access to DA binding sites in cell-free membranes may occur from the intracellular side of the membrane. Unlike DA binding, CFT binding to both cells and membranes was sensitive to Na(+) and D313N mutation but insensitive to gramicidin, consistent with exclusively external access to sites that are different from but conformationally linked to those for DA.  相似文献   

16.
β-Phenylethylamine (βPEA) is an endogenous amine that has been shown to increase the synaptic levels of dopamine (DA). A number of in vitro and behavioral studies suggest the dopamine transporter (DAT) plays a role in the effects generated by βPEA, however the mechanism through which βPEA affects DAT has not yet been elucidated. Here, we used Caenorhabditis (C.) elegans DAT (DAT-1) expressing LLC-pk1 cells and neuronal cultures to investigate whether the βPEA-induced increase of extracellular DA required DAT-1. Our data show that βPEA increases extracellular dopamine both in DAT-1 transfected cells and cultures of differentiated neurons. RTI-55, a cocaine homologue and DAT inhibitor, completely blocked the βPEA-induced effect in transfected cells. However in neuronal cultures, RTI-55 only partly inhibited the increase of extracellular DA generated by βPEA. These results suggest that βPEA requires DAT-1 and other, not yet identified proteins, to increase extracellular DA when tested in a native system. Furthermore, our results suggest that βPEA-induced increase of extracellular DA does not require functional monoamine vesicles as genetic ablation of the C. elegans homologue vesicular monoamine transporter, cat-1, did not compromise the ability of βPEA to increase extracellular DA. Finally, our electrophysiology data show that βPEA caused fast-rising and self-inactivating amperometric currents in a subset of wild-type DA neurons but not in neurons isolated from dat-1 knockout animals. Taken together, these data demonstrate that in both DA neurons and heterogeneous cultures of differentiated C. elegans neurons, βPEA releases cytoplasmic DA through DAT-1 to ultimately increase the extracellular concentration of DA.  相似文献   

17.
Under some pathological conditions in brain, a large amount of superoxide anion (O2 ?) is produced, causing various cellular damages. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD should play a role to detoxify O2 ? in extracellular space; however, a little is known about EC-SOD in brain. Although dopamine (DA) stored in the synaptic vesicle is stable, the excess leaked DA is spontaneously oxidized to yield O2 ? and reactive DA quinones, causing damages of dopaminergic neurons. In the present study, we examined the effects of DA on SOD expression in cultured rat cortical astrocytes. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected; however, only EC-SOD was increased by DA exposure for 24 h, dose-dependently. The expression of EC-SOD protein and the cell-surface SOD activity in astrocytes also increased with 100 μM DA exposure. The increase of EC-SOD mRNA by DA was inhibited by a DA transporter inhibitor, GBR12909, whereas it was not changed by DA receptor antagonists, SKF-83566 (D1) and haloperidol (D2). Furthermore, a monoamine oxidase inhibitor, pargyline, and antioxidants, N-acetyl-l-cysteine and glutathione, also did not affect the DA-induced expression of EC-SOD mRNA. On the other hand, an inhibitor of nuclear factor kappaB (NF-κB), ammonium pyrrolidine-1-carbodithioate, suppressed the DA-induced expression of EC-SOD mRNA. These results suggest that DA incorporated into the cells caused the induction of EC-SOD mRNA followed by the enhancements of EC-SOD protein level and the enzyme activity, and that NF-κB activation is involved in the mechanisms of the EC-SOD induction. The regulation of EC-SOD in astrocytes surrounding dopaminergic neurons may contribute to the defensive mechanism against oxidative stress in brain.  相似文献   

18.
The ambient resting dopamine (DA) concentration in brain regulates cognition and motivation. Despite its importance, resting DA level in vivo remains elusive. Here, by high-frequency stimulation of the medial forebrain bundle and immediately following the stimulus-induced DA overflow, we recorded a DA “undershoot” which is a temporal reduction of DA concentration to a level below the baseline. Based on the DA undershoot, we predicted a resting DA concentration of ∼73 nM in rat striatum in vivo. Simulation studies suggested that removing basal DA by DAT during the post-stimulation inhibition of tonic DA release caused the DA undershoot, and the resting concentration of DA modulated the kinetics of the evoked DA transient. The DA undershoot was eliminated by either blocking D2 receptors with haloperidol or blocking the DA transporter (DAT) with cocaine. Therefore, the impulse-dependent resting DA concentration is in the tens of nanomolar range and is modulated by the presynaptic D2 receptors and the DAT in vivo.  相似文献   

19.
Dopamine-induced inhibition of Na(+)-K(+)-ATPase has been suggested to play a role in the regulation of Na(+) absorption at the intestinal level, and these effects were mediated by dopamine D(1)-like receptors. The aim of this work was to evaluate the effect of the activation of the D(1)-like receptors on the activity of the Na(+)/H(+) exchanger (NHE) in the rat intestinal epithelial cell line IEC-6. The presence of D(1) receptors was confirmed by immunoblotting. The dopamine D(1)-like receptor agonist SKF-38393 produced a concentration-dependent inhibition of NHE activity and stimulation of adenylyl cyclase (AC), this being antagonized by the D(1) selective antagonist SKF-83566. Effects of SKF-38393 on NHE and AC activities were maximal at 5 min of exposure to the agonist and rapidly diminished with no effect at 25 min. Exposure of cells for 25 min to dibutyryl-cAMP (0.5 mM) or to the AC activator forskolin (3 microM) effectively inhibited NHE activity. Pretreatment of cells with heparin (1 microM), a nonselective G protein-coupled receptor kinase (GRK) inhibitor, prevented the loss of effects on NHE activity after 25 min exposure to SKF-38393. The presence of GRK4, GRK6A, and GRK6B was confirmed by immunoblotting. Overnight treatment with the anti-GRK4-6 antibody complexed with Lipofectin was also effective in preventing loss of the effects of SKF-38393 on NHE and AC activities. It is concluded that dopamine D(1) receptors in IEC-6 rapidly desensitize to D(1)-like agonist stimulation and GRK4 and 6 appear to be involved in agonist-mediated responsiveness and desensitization.  相似文献   

20.
In HEK 293 cells expressing the human dopamine transporter (DAT), a 10-min incubation with 10 microM cocaine followed by extensive washing resulted in a 30% increase in [3H]dopamine (DA) uptake as well as an increase in cell surface DAT in biotinylation experiments. Consistent with this novel regulation, [3H]DA uptake into synaptosomes prepared from the nucleus accumbens of rats sacrificed 30 min after a single cocaine injection (30 mg/kg) was significantly increased compared to controls (56% increase in V(max), no change in K(m)). In addition, DA clearance in the striatum of anesthetized rats was increased after local application of a low (3 pmol) but not high (65 pmol) dose of cocaine, presumably as a result of mobilization of DAT to the cell surface. Cocaine-induced increases in cell surface expression of DAT and associated changes in DA clearance represent a novel mechanism that may play a role in its addictive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号