首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
生物体内存在大量的非编码RNA ,它们形态各异 ,功能也千差万别 ,在生物的生长、发育、分化进程中扮演着不同的角色 ,尤其是siRNA ,它是RNA沉默的诱因。RNA沉默是真核生物特有的现象 ,它需要一系列因子的参与 ,其中RNA依赖性的RNA聚合酶是沉默起始的关键 ,Dicer酶是形成siRNA的基础 ,而RNA沉默诱导复合体 (RSIC)等是发生RNA沉默“链式反应”的关键因子  相似文献   

4.
帽结构是所有RNA 聚合酶Ⅱ转录产物的特征性结构,它在m RNA 的功能和代谢的很多方面起作用. 在这些过程中还离不开相关蛋白质对它的识别和粘附,作为它行使功能的媒介,这些蛋白质就称为帽结合蛋白(Cap-Binding Protein,CBP). 该文主要讨论了帽结构与胞质中的CBP-eIF4E(eukaryotic initiation factor 4E,真核起始因子4E)的相互作用在m RNA 指导的翻译起始中的作用机制,以及帽结构与核内发现的另一种CBP复合体相互作用在m RNA 加工中的作用.  相似文献   

5.
    
During trans-splicing of discontinuous organellar introns, independently transcribed coding sequences are joined together to generate a continuous mRNA. The chloroplast psaA gene from Chlamydomonas reinhardtii encoding the P(700) core protein of photosystem I (PSI) is split into three exons and two group IIB introns, which are both spliced in trans. Using forward genetics, we isolated a novel PSI mutant, raa4, with a defect in trans-splicing of the first intron. Complementation analysis identified the affected gene encoding the 112.4 kDa Raa4 protein, which shares no strong sequence identity with other known proteins. The chloroplast localization of the protein was confirmed by confocal fluorescence microscopy, using a GFP-tagged Raa4 fusion protein. RNA-binding studies showed that Raa4 binds specifically to domains D2 and D3, but not to other conserved domains of the tripartite group II intron. Raa4 may play a role in stabilizing folding intermediates or functionally active structures of the split intron RNA.  相似文献   

6.
RNA polymerase II (Pol II) is a well‐characterized DNA‐dependent RNA polymerase, which has also been reported to have RNA‐dependent RNA polymerase (RdRP) activity. Natural cellular RNA substrates of mammalian Pol II, however, have not been identified and the cellular function of the Pol II RdRP activity is unknown. We found that Pol II can use a non‐coding RNA, B2 RNA, as both a substrate and a template for its RdRP activity. Pol II extends B2 RNA by 18 nt on its 3′‐end in an internally templated reaction. The RNA product resulting from extension of B2 RNA by the Pol II RdRP can be removed from Pol II by a factor present in nuclear extracts. Treatment of cells with α‐amanitin or actinomycin D revealed that extension of B2 RNA by Pol II destabilizes the RNA. Our studies provide compelling evidence that mammalian Pol II acts as an RdRP to control the stability of a cellular RNA by extending its 3′‐end.  相似文献   

7.
Carotenoid-radical interactions   总被引:6,自引:0,他引:6  
Carotenoids have been reported to react with virtually any radical species likely to be encountered in a biological system. The products of such reactions are frequently short-lived radical species that can decay to more stable products. In some cases, stable adducts can be observed, but in the majority of interactions with radicals, carotenoids break down to degradation products very similar to what is seen with oxidative degradation. It is only recently that the biological activity of these breakdown products has begun to be investigated.  相似文献   

8.
RNA:诱导基因沉默   总被引:2,自引:0,他引:2  
在生物体中,双链RNA(double-strand RNA,dsRNA)裂解后的小RNA可以诱导细胞质和基因组水平外源基因沉默。所谓基因沉默(gene silencing)是指生物体中特定基因由于种种原因不表达。小RNA能诱导互补信使RNA在转录后降解。RNA沉默是基因组水平的免疫现象,代表了进化过程中原始的基因组对抗外源基因序列表达的保护机制,在动植物进化中起着重要作用,RNA沉默具有抵抗病毒入侵、抑制转座子活动等作用,并调控蛋白编码基因的表达,具有十分诱人的应用前景。  相似文献   

9.
    
The Picornaviridae virus family contains a large number of human pathogens such as poliovirus, hepatitis A virus and rhinoviruses. Amongst the viruses belonging to the genus Enterovirus, several serotypes of coxsackievirus coexist for which neither vaccine nor therapy is available. Coxsackievirus B3 is involved in the development of acute myocarditis and dilated cardiomyopathy and is thought to be an important cause of sudden death in young adults. Here, the first crystal of a coxsackievirus RNA‐dependent RNA polymerase is reported. Standard crystallization methods yielded crystals that were poorly suited to X‐ray diffraction studies, with one axis being completely disordered. Crystallization was improved by testing crystallization solutions from commercial screens as additives. This approach yielded crystals that diffracted to 2.1 Å resolution and that were suitable for structure determination.  相似文献   

10.
11.
目的:构建具有多种剪接形式的RNA结合蛋白(RBPMS)基因siRNA的真核表达载体,观察其对RBPMS表达的影响。方法:利用RNA干扰(RNAi)技术,设计并合成了2条针对RBPMS基因的siRNA,将其克隆到siRNA表达载体pSliencer2.1-U6neo上。将重组质粒和带FLAG标签的RBPMS共转染293T人胚肾细胞,通过Western印迹检验RNAi效应。结果:测序证明成功构建了RBPMSsiRNA真核表达载体;Western印迹表明构建的siRNA能有效地抑制RBPMS基因的表达。结论:构建了RBPMSsiRNA的真核表达载体,该siRNA能有效地抑制RBPMS基因的表达。  相似文献   

12.
    
Recent cryo‐EM structures of a group II intron caught in the process of invading DNA have given new insight into the mechanisms of both splicing and retrotransposition. Conformational dynamics involving the branch‐site helix domain VI are responsible for substrate exchange between the two steps of splicing. These structural rearrangements have strong parallels with the movement of the branch‐site helix in the spliceosome during catalysis. This is strong evidence for the spliceosome evolving from a group II intron ancestor. We observe other topological changes in the overall structure of the catalytic domain V that may occur in the spliceosome as well. Therefore, studying group II introns not only provides us with insight into the evolutionary origins of the spliceosome, but also may inform the design of experiments to further probe structure–function relationships in this eukaryotic splicing apparatus. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution  相似文献   

13.
    
The nuclear cap‐binding complex (CBC) binds the 7‐methyl‐G(5′)ppp(5′)N cap structure at the 5′ end of pre‐messenger and uracil‐rich small nuclear RNAs in the nucleus. It mediates interaction of these capped RNAs with various nuclear machineries involved in RNA maturation and is co‐exported with them to the cytoplasm. The structure of human CBC, which comprises the subunits CBP20 and CBP80, has previously been determined in a mildly trypsinated form which can no longer bind the cap. Here, the engineering and crystallization of two variant CBCs with deletions in CBP80 which do not affect function are described. A complex with a small N‐terminal deletion in CBP80 was crystallized in space group C2 with one complex per asymmetric unit. The crystals diffract to 2 Å resolution and give the first structure of intact but cap‐free CBC. An additional internal deletion in CBP80 of a prominent solvent‐exposed coiled coil gives rise to a more compact complex. This was co‐crystallized with the cap analogue m7GpppG in two different crystal forms which could grow in the same drop. Form 1 belongs to space group P3121 with one complex per asymmetric unit and diffracts to 2.15 Å resolution. Form 2 belongs to space group P212121 with two complexes per asymmetric unit and diffracts to 2.3 Å resolution. In both forms, strong extra electron density is observed for the cap analogue and for the N‐ and C‐terminal extensions of CBP20 which was absent or disordered in all previous structures.  相似文献   

14.
Group II introns are catalytic RNAs that are excised from their precursors in a protein-dependent manner in vivo. Certain group II introns can also react in a protein-independent manner under nonphysiological conditions in vitro. The efficiency and fidelity of the splicing reaction is crucial, to guarantee the correct formation and expression of the protein-coding mRNA. RmInt1 is an efficient mobile intron found within the ISRm2011-2 insertion sequence in the symbiotic bacterium Sinorhizobium meliloti. The RmInt1 intron self-splices in vitro, but this reaction generates side products due to a predicted cryptic IBS1* sequence within the 3′ exon. We engineered an RmInt1 intron lacking the cryptic IBS1* sequence, which improved the fidelity of the splicing reaction. However, atypical circular forms of similar electrophoretic mobility to the lariat intron were nevertheless observed. We analyzed a run of four cytidine residues at the 3′ splice site potentially responsible for a lack of fidelity at this site leading to the formation of circular intron forms. We showed that mutations of residues base-pairing in the tertiary EBS3–IBS3 interaction increased the efficiency and fidelity of the splicing reaction. Our results indicate that RmInt1 has developed strategies for decreasing its splicing efficiency and fidelity. RmInt1 makes use of unproductive splicing reactions to limit the transposition of the insertion sequence into which it inserts itself in its natural context, thereby preventing potentially harmful dispersion of ISRm2011-2 throughout the genome of its host.  相似文献   

15.
    
Norovirus (NV) RNA‐dependent RNA polymerase (RdRP) is essential for replicating the genome of the virus, which makes this enzyme a key target for the development of antiviral agents against NV gastroenteritis. In this work, a complex of NV RdRP bound to manganese ions and an RNA primer‐template duplex was investigated using X‐ray crystallography and hybrid quantum chemical/molecular mechanical simulations. Experimentally, the complex crystallized in a tetragonal crystal form. The nature of the primer/template duplex binding in the resulting structure indicates that the complex is a closed back‐tracked state of the enzyme, in which the ‐end of the primer occupies the position expected for the post‐incorporated nucleotide before translocation. Computationally, it is found that the complex can accept a range of divalent metal cations without marked distortions in the active site structure. The highest binding energy is for copper, followed closely by manganese and iron, and then by zinc, nickel, and cobalt. Proteins 2017; 85:1435–1445. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
    
The C‐terminal domain protein (amino‐acid residues 535–759) of the PB2 subunit of the RNA‐dependent RNA polymerase from the highly pathogenic influenza A virus was expressed as a soluble protein in Escherichia coli and crystallized using sodium formate as a precipitant. Data sets were collected from crystals of native and selenomethionine‐substituted protein on the KEK NW12 beamline at the Photon Factory and the crystals diffracted to a maximum resolution of 2.44 Å for the SeMet‐derivative crystal. The native crystals were found to belong to space group P3221, with unit‐cell parameters a = b = 52.5, c = 156.3 Å. The Matthews value (VM) was 2.7 Å3 Da−1, assuming the presence of one molecule in the asymmetric unit. The SeMet‐derivative crystals were found to belong to the same space group, with unit‐cell parameters a = b = 52.6, c = 156.4 Å. Attempts are being made to solve the structure by multi‐wavelength anomalous dispersion phasing.  相似文献   

17.
18.
    
Intron retention (IR), where one or more introns remain in the RNA after splicing, was long thought to be rare in mammalian cells, albeit common in plants and some viruses. Largely due to the development of better methods for RNA analysis, it has now been recognized that IR is much more common than previously thought and that this mechanism is likely to play an important role in mammalian gene regulation. To date, most publications and reviews about IR have described the resulting mRNAs as “dead end” products, with no direct consequence for the proteome. However, there are also many reports of mRNAs with retained introns giving rise to alternative protein isoforms. Although this was originally revealed in viral systems, there are now numerous examples of bona fide cellular proteins that are translated from mRNAs with retained introns. These new isoforms have sometimes been shown to have important regulatory functions. In this review, we highlight recent developments in this area and the research on viruses that led the way to the realization of the many ways in which mRNAs with retained introns can be regulated. This article is categorized under:
  • RNA Processing > Splicing Mechanisms
  • RNA Processing > Splicing Regulation/Alternative Splicing
  • RNA Export and Localization > Nuclear Export/Import
  • RNA Interactions with Proteins and Other Molecules > RNA–Protein Complexes
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号