首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Introns are often added to transgenes to increase expression, although the mechanism through which introns stimulate gene expression in plants and other eukaryotes remains mysterious. While introns vary in their effect on expression, it is unknown whether different genes respond similarly to the same stimulatory intron. Furthermore, the degree to which gene regulation is preserved when expression is increased by an intron has not been thoroughly investigated. To test the effects of the same intron on the expression of a range of genes, GUS translational fusions were constructed using the promoters of eight Arabidopsis genes whose expression was reported to be constitutive (GAE1, CNGC2 and ROP10), tissue specific (ADL1A, YAB3 and AtAMT2) or regulated by light (ULI3 and MSBP1). For each gene, a fusion containing the first intron from the UBQ10 gene was compared to fusions containing the gene's endogenous first intron (if the gene has one) or no intron. In every case, the UBQ10 intron increased expression relative to the intronless control, although the magnitude of the change and the level of expression varied. The UBQ10 intron also changed the expression patterns of the CNGC2 and YAB3 fusions to include strong activity in roots, indicating that tissue specificity was disrupted by this intron. In contrast, the regulation of the ULI3 and MSBP1 genes by light was preserved when their expression was stimulated by the intron. These findings have important implications for biotechnology applications in which a high level of transgene expression in only certain tissues is desired.  相似文献   

9.
Ⅱ组内含子(group Ⅱ intron)存在于原生生物、真菌、藻类、植物细胞器以及细菌和古细菌基因组中.在体内,Ⅱ组内含子可通过两步连续的转酯反应从前体RNA中自剪接,并连接两 侧外显子.许多Ⅱ组内含子的剪接反应是由蛋白质辅助完成的,这种蛋白质有的是由内含子编码,有的是由宿主基因编码.Ⅱ组内含子能够有效地归巢进入无内含子的等位基因,也能 够以低频率逆转座进入非等位基因.转座过程依赖内含子RNA和内含子编码的蛋白质(内切核酸酶活性和逆转录酶活性).本论文在总结Ⅱ组内含子最新研究成果的基础上,分析Ⅱ组内含子可能的起源和进化途径  相似文献   

10.
11.
Some of the principal transitions in the evolution of eukaryotes are characterized by engulfment of prokaryotes by primitive eukaryotic cells. In particular, approximately 1.6 billion years ago, engulfment of a cyanobacterium that became the ancestor of chloroplasts and other plastids gave rise to Plantae, the major branch of eukaryotes comprised of glaucophytes, red algae, green algae, and green plants. After endosymbiosis, there was large-scale migration of genes from the endosymbiont to the nuclear genome of the host such that approximately 18% of the nuclear genes in Arabidopsis appear to be of chloroplast origin. To gain insights into the process of evolution of gene structure in these, originally, intronless genes, we compared the properties and the evolutionary dynamics of introns in genes of plastid origin and ancestral eukaryotic genes in Arabidopsis, poplar, and rice genomes. We found that intron densities in plastid-derived genes were slightly but significantly lower than those in ancestral eukaryotic genes. Although most of the introns in both categories of genes were conserved between monocots (rice) and dicots (Arabidopsis and poplar), lineage-specific intron gain was more pronounced in plastid-derived genes than in ancestral genes, whereas there was no significant difference in the intron loss rates between the 2 classes of genes. Thus, after the transfer to the nuclear genome, the plastid-derived genes have undergone a massive intron invasion that, by the time of the divergence of dicots and monocots (150-200 MYA), yielded intron densities only slightly lower than those in ancestral genes. Nevertheless, the accumulation of introns in plastid-derived genes appears not to have reached saturation and continues to this time, albeit at a low rate. The overall pattern of intron gain and loss in the plastid-derived genes is shaped by this continuing gain and the more general tendency for loss that is characteristic of the recent evolution of plant genes.  相似文献   

12.
张勇  杨宝玉  陈士云 《遗传学报》2006,33(12):1105-1111
分析了来源于农杆菌介导的4个独立的大豆转化系的后代遗传特性。分别采用种子切片GUS染色方法和除草剂涂抹以及喷洒方法检测gus报告基因和抗除草剂bar基因在后代的表达。其中3个转化系T1代gus基因和bar基因能够以孟德尔方式3:1连锁遗传,说明这2个基因整合在大豆基因组的同一位点。这3个转化系在T2代获得了纯合的转化系,并能够稳定遗传至T5代。有一个转化系在T1代GUS和抗除草剂检测都为阴性,但通过Southern杂交证明转基因存在于后代基因组,显示发生了转基因沉默。为了证明转基因沉默是转录水平还是转录后水平,T1代植物叶片接种大豆花叶病毒(SMV)并不能抑制转基因沉默,说明该转化系基因沉默可能不是发生在转录后水平。  相似文献   

13.
MicroRNAs: something important between the genes   总被引:10,自引:0,他引:10  
Non-coding small endogenous RNAs, of 21-24 nucleotides in length, have recently emerged as important regulators of gene expression in both plants and animals. At least three categories of small RNAs exist in plants: short interfering RNAs (siRNAs) deriving from viruses or transgenes and mediating virus resistance or transgene silencing via RNA degradation; siRNAs deriving from transposons or transgene promoters and controlling transposon and transgene silencing probably via chromatin changes; and microRNAs (miRNAs) deriving from intergenic regions of the genome and regulating the expression of endogenous genes either by mRNA cleavage or translational repression. The disruption of miRNA-mediated regulation causes developmental abnormalities in plants, demonstrating that miRNAs play an important role in the regulation of developmental decisions.  相似文献   

14.
Tang W  Luo XY  Sanmuels V 《Cell research》2001,11(3):181-186
INTRODUCTIONThe genome structure of plants can be alteredby genetic transformation. During the process ofgene transfer, Agrobacterium tumefaCJens integratepart of their genome into the genome of susceptiblespecies. Recently, genetic transfOrmation techniqueshave been used to modify significantly the organi-zation of the genome. Introducing transgenes intop1ants can both modify the number of copies of agiven sequence and affect gene expression. Becausethe expression of a transgene cannot…  相似文献   

15.
Dicer proteins are central to the different mechanisms involving RNA interference. Plants have evolved multiple DICER‐LIKE (DCL) copies, thus enabling functional diversification. In Arabidopsis, DCL2 and DCL4 process double‐stranded RNA into 22 and 21 nucleotide small interfering (si)RNAs, respectively, and have overlapping functions with regards to virus and transgene silencing. Nonetheless, some studies have reported that dcl2 or dcl4 single mutations are sometimes sufficient to hinder silencing. To better dissect the role of DCL2 and DCL4, we analyzed silencing kinetics and efficiencies using different transgenic systems in single and double mutant backgrounds. The results indicate that DCL2 stimulates transitivity and secondary siRNA production through DCL4 while being sufficient for silencing on its own. Notably, silencing of 35S‐driven transgenes functions more efficiently in dcl4 mutants, indicating that DCL4 mostly obscures DCL2 in wild‐type plants. Nonetheless, in a dcl4 mutant compromised in phloem‐originating silencing, ectopically expressed DCL2 allows restoration of silencing, suggesting that DCL2 is not, or poorly, expressed in phloem. Remarkably, this ectopic DCL2 contribution to phloem‐originating silencing is dependent on the activity of RNA‐DEPENDENT RNA POLYMERASE6. These results indicate that, despite differences in the silencing activity of their small RNA products, DCL2 and DCL4 mostly act redundantly yet hierarchically when present simultaneously.  相似文献   

16.
Increases in our understanding of gene function have greatly expanded the repertoire of possible genetic interventions at our disposal with the consequence that many genetic engineering applications require multiple manipulations in which target genes can be both overexpressed and silenced in a simple and co-ordinated manner. Using synthetic introns as a source of encoding short-interfering RNA (siRNA), we demonstrate that it is possible to simultaneously express both a transgene and siRNA from a single polymerase (Pol) II promoter. By encoding siRNA as an intron between two protein domains requiring successful splicing for functionality, it was possible to demonstrate that splicing was occurring, that the coding genes (exonic transgenes) resulted in functional protein, and that the spliced siRNA-containing lariat was capable of modulating expression of a separate target gene. We subsequently extended this concept to develop pTRIDENT-based multi-cistronic vectors that were capable of co-ordinated expression of up to three siRNAs and three transgenes off a single genetic platform. Such multi-gene engineering technology, enabling concomitant transgene overexpression and target gene knockdown, should be useful for therapeutic, biopharmaceutical production, and basic research applications.  相似文献   

17.
18.
19.
Co-silencing of homologous transgenes in tobacco   总被引:1,自引:0,他引:1  
Two transgenes inserted into different genomic positions can co-inactivate each other when they share homologous sequences while each of the two homologous transgenes is stably expressed in the absence of a second homologous copy. To evaluate the efficiency of such homology-dependent gene silencing (HDGS) effects, we have produced 19 tobacco transformants that contained a stably expressed NPTII transgene inserted into a single genomic locus, and have analysed the stability of each transgene in the presence of a second stably expressed homologous transgene. All transformants shared the coding region of the NPTII gene but individual transformants differed in transgene copy number, expression levels and in the continuity of the transgene homology due to the insertion of introns into the NPTII region as well as the use of different promoters and terminators for the design of the transgene constructs. We generated 189 progeny populations representing all possible dual combinations among the 19 lines and analysed the kanamycin resistance of 400 seedlings of each cross. Our data show (1) that gene silencing occurs at a relative low frequency when transgenic loci sharing an homology at the coding sequence level are combined, and (2) that neither the variation of this homology by insertion of introns in the coding sequence, or by changing the promoter and terminator of the construct, nor the variation in the expression level of the transgene, are decisive parameters modifying the efficiency of co-silencing between two NPTII transgenes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号