首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Streptococcus phocae, a bacterial pathogen of seals, could reliably be identified by PCR amplification using oligonucleotide primers designed according to species specific segments of the previously sequenced 16S rRNA gene and the 16S-23S rDNA intergenic spacer region of this species. The PCR mediated assay allowed an identification of S. phocae isolated from harbor and gray seals and from Atlantic salmons. No cross-reaction could be observed with 13 different other streptococcal species and subspecies and with Lactococcus garvieae strains investigated for control purposes.  相似文献   

2.
Some Clostridium butyricum strains have been used as probiotics for both humans and animals. Strain-specific identification is necessary for the manufacturing process of probiotics. The aim of this study was to determine whether there are sufficient genetic variations in 16S-23S intergenic spacer regions (ISRs) to discriminate C. butyricum at the biovar level. We amplified ISRs from five reference strains, a probiotic strain (MIYAIRI 588) and 22 isolates, and we classified them into four groups on the basis of amplification patterns (type A through D). However, amplification of ISRs is not sufficient for discriminating strains. Moreover, we compared genetic structures of these ISRs. Sequence analysis revealed that the size variations of ISRs were generated by the insertion of tRNA genes and unique sequences into the internal portion, while the external portions were highly conserved. On the basis of the highly conserved nucleotide sequences within the ISRs, we developed a PCR primer set specific to C. butyricum. In addition, the PCR primer designed from the unique inserted sequence in type B strain was useful to differentiate probiotic strains at the biovar level.  相似文献   

3.
AIMS: The restriction fragment length polymorphism (RFLP) method was used to differentiate Lactobacillus species having closely related identities in the 16S-23S rDNA intergenic spacer region (ISR). Species-specific primers for Lact. farciminis and Lact. alimentarius were designed and allowed rapid identification of these species. METHODS AND RESULTS: The 16S-23S rDNA spacer region was amplified by primers tAla and 23S/p10, then digested by HinfI and TaqI enzymes and analysed by electrophoresis. Digestion by HinfI was not sufficient to differentiate Lact. sakei, Lact. curvatus, Lact. farciminis, Lact. alimentarius, Lact. plantarum and Lact. paraplantarum. In contrast, digestion carried out by TaqI revealed five different patterns allowing these species to be distinguished, except for Lact. plantarum from Lact. paraplantarum. The 16S-23S rDNA spacer region of Lact. farciminis and Lact. alimentarius were amplified and then cloned into vector pCR(R)2.1 and sequenced. The DNA sequences obtained were analysed and species-specific primers were designed from these sequences. The specificity of these primers was positively demonstrated as no response was obtained for 14 other species tested. RESULTS AND CONCLUSIONS: The species-specific primers for Lact. farciminis and Lact. alimentarius were shown to be useful for identifying these species among other lactobacilli. The RFLP profile obtained upon digestion with HinfI and TaqI enzymes can be used to discriminate Lact. farciminis, Lact. alimentarius, Lact. sakei, Lact. curvatus and Lact. plantarum. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have established the first species-specific primer for PCR identification of Lact. farciminis and Lact. alimentarius. Both species-specific primer and RFLP, could be used as tools for rapid identification of lactobacilli up to species level.  相似文献   

4.
To determine the variability of the 16S-23S rRNA intergenic spacer region (ISR) of the newly described Acinetobacter baylyi, 88 clones containing ISR amplicons were screened and 14 chosen for further analysis. Two different sized 16S-23S rRNA ISRs were distinguished comprising five variable and four conserved nucleotide blocks. The major regions of heterogeneity between the different sized ISRs were due to blocks of substitutions with unique secondary structures interspersed with nucleotide substitutions, rather than differences caused by presence or absence of tRNA genes, which is often the case. Recombination events causing shuffling of nucleotide blocks are considered the most likely explanation for the mosaic structure observed between the different copies of the ISR. Single base differences present in the long ISR (LISR) were then exploited in attempts to detect possible heterogeneity between rrn copies in Acinetobacter baylyi but variability was not detected by RFLP analysis of LISR-specific PCR products. These primers were shown to be highly specific for 3 Acinetobacter baylyi strains based on LISR sequence homogeneity.  相似文献   

5.
The method for DNA fingerprinting of the 16S-23S rDNA intergenic spacer region was modified to increase resolution of bacterial strains by thermal gradient gel electrophoresis (TGGE) analysis. By utilizing the high melting temperature region of the tRNA gene located in the middle of the 16S-23S rDNA intergenic spacer region as an internal clamp for TGGE, multiple melting domain problems were solved. PCR primers lacking a stretch of GC-rich sequences (GC-clamp) amplified the intergenic spacer region more efficiently than GC-clamped primers. Therefore, PCR artifacts were avoided by using low, 17-cycle, PCR. The method was successfully applied to diverse bacterial species for strain differentiation by TGGE without requiring a special PCR primer set.  相似文献   

6.
Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.  相似文献   

7.
A bacterial strain, designated BzDS03 was isolated from water sample, collected from Dal Lake Srinagar. The strain was characterized by using 16S ribosomal RNA gene and 16S-23S rRNA internal transcribed spacer region sequences. Phylogenetic analysis showed that 16S rRNA sequence of the isolate formed a monophyletic clade with genera Escherichia. The closest phylogenetic relative was Escherichia coli with 99% 16S rRNA gene sequence similarity. The result of Ribosomal database project's classifier tool revealed that the strain BzDS03 belongs to genera Escherichia.16S rRNA sequence of isolate was deposited in GenBank with accession number FJ961336. Further analysis of 16S-23S rRNA sequence of isolate confirms that the identified strain BzDS03 be assigned as the type strain of Escherichia coli with 98% 16S-23S rRNA sequence similarity. The GenBank accession number allotted for 16S-23S rRNA intergenic spacer sequence of isolate is FJ961337.  相似文献   

8.
AIM: In this study, we evaluated, the use of universal primers, specific for the 16S-23S rRNA intergenic region, to detect and identify nine species that are of high interest for the microbiological control of water. METHODS AND RESULTS: The analysis of the fragments was carried out using a High Resolution acrylamide/bisacrylamide gels in a fluorescent automated DNA sequencer. The results showed specific profiles for each of the nine species but this technique failed to detect simultaneously micro-organisms in samples containing a mixed population. CONCLUSION: Nevertheless, the electrophoretic profiles obtained provided a very useful tool for the rapid and specific identification of water isolates. SIGNIFICANCE AND IMPACT OF THE STUDY: A possible new methodology for a rapid identification of pathogens in water.  相似文献   

9.
AIMS: The organization of ribosomal RNA (rrn) operons in Lactobacillus sanfranciscensis was studied in order to establish an easy-to-perform method for identification of L. sanfranciscensis strains, based on the length and sequence polymorphism of the 16S-23S rDNA intergenic spacer region (ISR). METHODS AND RESULTS: PCR amplification of the 16S-23S rDNA ISRs of L. sanfranciscensis gave three products distinguishing this micro-organism from the remaining Lactobacillus species. Sequence analysis revealed that two of the rrn operons were organized as in previously reported lactobacilli: large spacer (L-ISR), containing tRNA(Ile) and tRNA(Ala) genes; small spacer (S-ISR) without tRNA genes. The third described spacer (medium, M-ISR), original for L. sanfranciscensis, harboured a tRNA-like structure. An oligonucleotide sequence targeting the variable region between tDNA(Ile) and tDNA(Ala) of L. sanfranciscensis L-ISR was approved to be suitable in species-specific identification procedure. Analysis by pulse-field gel electrophoresis of the chromosomal digest with the enzyme I-CeuI showed the presence of seven rrn clusters. Lactobacillus sanfranciscensis genome size was estimated at c. 1.3 Mb. CONCLUSIONS: Direct amplification of 16S-23S ISRs or PCR with specific primer derived from L-ISR showed to be useful for specific typing of L. sanfranciscensis. This was due to the specific rrn operon organization of L. sanfranciscensis strains. SIGNIFICANCE AND IMPACT OF THE STUDY: In this paper, we have reported a rapid procedure for L. sanfranciscensis identification based on specific structures found in its rrn operon.  相似文献   

10.
The aim of this study was to develop an easy and accurate technique for the identification of the genus Geobacillus. For this purpose, Geobacillus genus-specific primers GEOBAC (GEOBAC-F and GEOBAC-R) based on the 16S-23S rRNA gene internal transcribed spacer (ITS) region sequences have been designed. In total, 52 sequences from three species of the genus Geobacillus (Geobacillus stearothermophilus, Geobacillus kaustophilus and Geobacillus lituanicus) were examined for the design of these primers. Analysis of the sequences revealed three highly conservative regions common to these species: 5' and 3' end regions of 16S-23S rRNA gene ITSs and box A. Some sequences possessed two additional conservative regions - genes of tRNA(Ile) and tRNA(Ala). These particular sequences were chosen for the construction of the primers. The designed primers targeted the gene of tRNA(Ile) and the 3' end region of ITSs. This technique was validated with both the reference strains of the genus Geobacillus and the thermophilic aerobic endospore-forming environmental isolates. Different Geobacillus species could be grouped according to the number and size of GEOBAC-PCR products and identified on the basis of the AluI and TaqI restriction analysis of these products.  相似文献   

11.
AIM: Campylobacter species are significantly implicated in human gastrointestinal infections. Of 20 species of Campylobacter, C. jejuni, C. coli and C. lari have been considered as the most important causative agents of human infections. In order to better understand the occurrence and epidemiology of these thermophilic Campylobacter species, an improved and rapid detection method is warranted. A novel triplex polymerase chain reaction (PCR) assay was developed based on the variable 16S-23S rDNA internal transcribed spacer (ITS) region to identify and discriminate between these species in water samples. METHODS AND RESULTS: Campylobacter species-specific primers for C. jejuni, C. coli and C. lari derived from highly variable sequences in the ITS region were used. Specificity of the newly designed primers and PCR conditions were verified using other species of Campylobacter as well as 31 different negative control species. The assay was further validated with 97 Campylobacter cultures from water samples. CONCLUSIONS: The assay was found to be simple, easy to perform, and had a high sensitivity, specificity and reproducibility. It enabled simultaneous detection and differentiation of multiple Campylobacter species in water samples. SIGNIFICANCE AND IMPACT OF STUDY: Use of the newly developed PCR assay, coupled with a previously developed rapid DNA template preparation step, will enable improved detection capabilities for Campylobacter species in environmental matrices.  相似文献   

12.
13.
14.
AIMS: Detection of polymorphisms in intergenic transcribed spacer (ITS) 16S-23S rRNA within single Frankia strains. METHODS AND RESULTS: Polymorphisms in the 16S-23S rRNA ITS were investigated in single-colony subcultures of seven Frankia isolates. Multiple ITS-polymerase chain reaction (PCR) bands were detected solely in isolates BMG5.5 and BMG5.11. The slow-migrating bands in the ITS-PCR agarose gel electrophoresis profiles of the isolates were revealed to be heteroduplexes on the basis of their migration shift in different electrophoretic matrices, southern hybridization and the single-strand DNA mung bean endonuclease digestion. Laser-scanned capillary electrophoresis detected two ITS-PCR fragments differing in length by three and six nucleotide insertions/deletions in strains BMG5.5 and BMG5.11, respectively. Sequence analysis of the cloned ITS showed that in strain BMG5.5 the two ITS differed by the presence of three to four copies of the 3-bp tandem repeat 5'-TGG-3'. In strain BMG5.11, the two ITS differed by the presence of two to three copies of the 6-bp tandem repeat 5'-CTTGGG-3'. CONCLUSIONS: We demonstrate the occurrence of ITS 16S-23S rRNa polymorphisms within single Frankia strains. SIGNIFICANCE AND IMPACT OF THE STUDY: We reported the occurrence of ITS 16S-23S rRNA polymorphisms within single Frankia strains from Elaeagnus host group recognized as the more flexible strains within Frankia genus. Furthermore, we underscored the applied interest of strains BMG5.11 and BMG5.5 in future ecological studies using ITS 16S-23S rRNA as molecular marker.  相似文献   

15.
Abstract Bioleaching is carried out by chemolithotrophic microorganisms, most of them belonging to the genera Thiobacillus and Leptospirillum . The role of the mixotrophic species T. cuprinus in this process is controversial, since its ecological study applying classical detection techniques to natural or industrial environments is very difficult. For this reason, we have developed an alternative method based on PCR-mediated detection using specific oligonucleotide primers that target variable regions of the 23S rRNA coding gene and of the 16S/23S intergenic spacer region. Specificity and sensitivity of PCR amplifications performed with both kinds of primers were studied.  相似文献   

16.
The diversity of 16S-23S rDNA intergenic spacer regions (ISR) among cellulolytic myxobacterial strains was assayed. Agarose gel electrophoresis of PCR amplification products from ten strains shows that there are at least four copies of rRNA operons in the genus Sorangium, based on their size and restriction enzymatic digest maps. There are two sequence organization patterns: tRNA(Ile)-tRNA(Ala)-containing ISR and tRNA-lacking ISR. The tRNA-containing ISRs are highly similar among strains and within a strain (more than 98% similarity) and contain the essential functional regions, such as a ribonuclease III recognition site and an antiterminator recognition site boxA. The tRNA-lacking ISR has no such functional sites that are important for yielding mature rRNA, which suggests that this type of rRNA operons might be degenerate. The tRNA-lacking ISR is divided into two types based on their sizes and sequences, which exhibits about 90% similarity within each type. Thus, the tRNA-lacking ISR polymorphisms can be used to discriminate among different strains of sorangial species.  相似文献   

17.
The aim of the present research is to identify rapidly the lactic acid bacteria (LAB) microflora of four natural French sourdoughs (GO, BF, VB and RF), applying a biphasic (restriction length polymorphism (RFLP) and sequencing) approach for bacterial identification. For this purpose, a database with the RFLP patterns of 30 lactobacilli type strains was created. So-developed ISR-RFLP algorithm was further applied for the differentiation and identification of 134 sourdough isolates. The 16S-23S rDNA intergenic spacer region was amplified by primers tAla and 23S/10, and then digested by HindIII, HinfI and α-TaqI enzymes. Nucleotide sequences of the cloned 16S-23S intergenic spacer region (ISR) were determined by the dideoxynucleotide chain termination method. The T7Prom and M13rev primers flanking the multiple cloning site of pCR2.1 DNA were used to sequence both DNA strands. The RFLP profile obtained upon digestion with HindIII, HinfI and α-TaqI enzymes can be used to discriminate Lactobacillus sanfranciscensis (66%), Lactobacillus panis (17%), Lactobacillus nantensis (11%) and Lactobacillus hammesii(6%) in sourdough GO, Lactobacillus sanfranciscensis (80%), Lactobacillus spicheri (14%) and Lactobacillus pontis(6%) in sourdoughs BF. In sourdoughs VB, which differed in the process temperature, we can differentiate Lactobacillus sanfranciscensis (89%) and Leuconostoc mesenteroidessubsp. mesenteroides (11%). Lactobacillus frumenti(47%), Lactobacillus hammesii (8%), and Lactobacillus paralimentarius (45%) were differentiated in sourdough RF.  相似文献   

18.
Seven slow-growing bacterial strains isolated from root nodules of yellow serradella (Ornithopus compressus) that originated from Asinara Island on North Western Sardinia in Italy were characterized by partial 16S rRNA gene and intergenic spacer (ITS) sequencing as well as amplified fragment length polymorphism (AFLP) genomic fingerprinting. The results indicated that the O. compressus isolates belong to the Bradyrhizobium canariense species. The analysis of ITS sequences divided the branch of B. canariense strains into two statistically separated groups (ITS clusters I and II). All the strains in ITS cluster I showed the presence of unique oligonucleotide insert TTAGAGACTTAGGTTTCTK. This insert was neither found in other described species of the family Rhizobiaceae nor in any other bacterial families and can be used as a natural and high selective genetic marker for ITS cluster I of B. canariense strains. ITS grouping of O. compressus isolates was supported by the unweighted pair group method with arithmetic averages cluster analysis of their AFLP patterns, suggesting that the strains of ITS cluster II were genetically closer to each other than to isolates from the ITS cluster I. A taxonomic importance is supposed of the revealed 19 bp ITS insert for an intraspecific division within high heterogeneous B. canariense species.  相似文献   

19.
Screening of large numbers of Acinetobacter spp. from activated sludge systems with Pyrolysis Mass Spectrometry (PyMS) showed that many did not cluster tightly with the currently described genomic species which have been obtained mainly from clinical sources. Selected isolates were then genotypically fingerprinted using their 16S-23S rDNA spacer region, and again the data revealed considerable differences in the genomic fingerprints of many of these activated sludge isolates to the predominantly clinical genomic species. In fact, few could be identified from them. The possibility that the current speciation within this genus is not adequate to encompass all these environmental isolates is addressed in relation to the methods used to study the population dynamics of Acinetobacter in activated sludge.  相似文献   

20.
High incidence (up to 40%) of symptoms of yellowing and yellow mottling was observed in 5–8 years old orchards of kinnow mandarin {Citrus reticulate Balanco (‘King’ × ‘Willow mandarin’)} in the Punjab state of India during a survey in January 2007. These symptoms are often confused with nutrient deficiency and other stress related disorders. However, a greening bacterium has been attributed to cause the disease. The disease was graft transmissible and sequencing of 16S rRNA, 16S/23S intergenic spacer region and 23S rRNA of the greening bacterium associated with yellowing disease in kinnow mandarin confirmed it to be Candidatus Liberibacter asiaticus (‘Ca L. asiaticus’) showing maximum identity of 95.9% with ‘Ca L. asiaticus’ from USA and Brazil in 16S rRNA. The study indicates definite association of ‘Ca L. asiaticus’ with yellowing/chlorotic mottling symptoms of greening disease of kinnow mandarin in Punjab state of India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号