共查询到20条相似文献,搜索用时 15 毫秒
1.
Komarova NY Meier S Meier A Grotemeyer MS Rentsch D 《Traffic (Copenhagen, Denmark)》2012,13(8):1090-1105
Di- and tripeptide transporters of the PTR/NRT1 (peptide transporter/nitrate transporter1)-family are localized either at the tonoplast (TP) or plasma membrane (PM). As limited information is available on structural determinants required for targeting of plant membrane proteins, we performed gene shuffling and domain swapping experiments of Arabidopsis PTRs. A 7 amino acid fragment of the hydrophilic N-terminal region of PTR2, PTR4 and PTR6 was required for TP localization and sufficient to redirect not only PM-localized PTR1 or PTR5, but also sucrose transporter SUC2 to the TP. Alanine scanning mutagenesis identified L(11) and I(12) of PTR2 to be essential for TP targeting, while only one acidic amino acid at position 5, 6 or 7 was required, revealing a dileucine (LL or LI) motif with at least one upstream acidic residue. Similar dileucine motifs could be identified in other plant TP transporters, indicating a broader role of this targeting motif in plants. Targeting to the PM required the loop between transmembrane domain 6 and 7 of PTR1 or PTR5. Deletion of either PM or TP targeting signals resulted in retention in internal membranes, indicating that PTR trafficking to these destination membranes requires distinct signals and is in both cases not by default. 相似文献
2.
Two‐pore channels (TPCs) constitute a family of endolysosomal cation channels with functions in Ca2+ signaling. We used a mutational analysis to investigate the role of channel domains for the trafficking of the Arabidopsis TPC1 to the tonoplast, a process that is generally not well understood in plants. The results show that the soluble C‐terminus was not essential for targeting but for channel function, while further C‐terminal truncations of two or more transmembrane domains impaired protein trafficking. An N‐terminal dileucine motif (EDPLI) proved to be critical for vacuolar targeting of TPC1, which was independent of the adaptor protein AP‐3. Deletion or mutation of this sorting motif, which is conserved among TPCs caused redirection of the protein transport to the plasma membrane. An N‐terminal region with a predicted α‐helical structure was shown to support efficient vacuolar trafficking and was essential for TPC1 function. Similar to their localization in mammalian endosomes and lysosomes, MmTPC1 and MmTPC2 were targeted to small organelles and the membrane of the lytic vacuole, respectively, when expressed in plant cells. These results shed new light on the largely uncharacterized sorting signals of plant tonoplast proteins and reveal similarities between the targeting machinery of plants and mammals. 相似文献
3.
Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform of prion protein, PrPSc, which leads to marked accumulation of PrPSc in brains, is a key pathogenic event in prion diseases, a group of fatal neurodegenerative disorders caused by prions. However, the exact mechanism of PrPSc accumulation in prion-infected neurons remains unknown. We recently reported a novel cellular mechanism to support PrPSc accumulation in prion-infected neurons, in which PrPSc itself promotes its accumulation by evading the cellular inhibitory mechanism, which is newly identified in our recent study. We showed that the VPS10P sorting receptor sortilin negatively regulates PrPSc accumulation in prion-infected neurons, by interacting with PrPC and PrPSc and trafficking them to lysosomes for degradation. However, PrPSc stimulated lysosomal degradation of sortilin, disrupting the sortilin-mediated degradation of PrPC and PrPSc and eventually evoking further accumulation of PrPSc in prion-infected neurons. These findings suggest a positive feedback amplification mechanism for PrPSc accumulation in prion-infected neurons. 相似文献
4.
S Caplan L M Hartnell R C Aguilar N Naslavsky J S Bonifacino 《The Journal of cell biology》2001,154(1):109-122
Regulated fusion of mammalian lysosomes is critical to their ability to acquire both internalized and biosynthetic materials. Here, we report the identification of a novel human protein, hVam6p, that promotes lysosome clustering and fusion in vivo. Although hVam6p exhibits homology to the Saccharomyces cerevisiae vacuolar protein sorting gene product Vam6p/Vps39p, the presence of a citron homology (CNH) domain at the NH(2) terminus is unique to the human protein. Overexpression of hVam6p results in massive clustering and fusion of lysosomes and late endosomes into large (2-3 microm) juxtanuclear structures. This effect is reminiscent of that caused by expression of a constitutively activated Rab7. However, hVam6p exerts its effect even in the presence of a dominant-negative Rab7, suggesting that it functions either downstream of, or in parallel to, Rab7. Data from gradient fractionation, two-hybrid, and coimmunoprecipitation analyses suggest that hVam6p is a homooligomer, and that its self-assembly is mediated by a clathrin heavy chain repeat domain in the middle of the protein. Both the CNH and clathrin heavy chain repeat domains are required for induction of lysosome clustering and fusion. This study implicates hVam6p as a mammalian tethering/docking factor characterized with intrinsic ability to promote lysosome fusion in vivo. 相似文献
5.
Ribeiro FM Black SA Cregan SP Prado VF Prado MA Rylett RJ Ferguson SS 《Journal of neurochemistry》2005,94(1):86-96
Maintenance of acetylcholine synthesis depends on the effective functioning of a high-affinity sodium-dependent choline transporter (CHT1). Recent studies have shown that this transporter is predominantly localized inside the cell, unlike other neurotransmitter transporters, suggesting that the trafficking of CHT1 to and from the plasma membrane may play a crucial role in regulating choline uptake. Here we found that CHT1 is rapidly and constitutively internalized in clathrin-coated vesicles to Rab5-positive early endosomes. CHT1 internalization is controlled by an atypical carboxyl-terminal dileucine-like motif (L531, V532) which, upon replacement by alanine residues, blocks CHT1 internalization in both human embryonic kidney 293 cells and primary cortical neurons and results in both increased CHT1 cell surface expression and choline transport activity. Perturbation of clathrin-mediated endocytosis with dynamin-I K44A increases cell surface expression and transport activity to a similar extent as mutating the dileucine motif, suggesting that we have identified the motif responsible for constitutive CHT1 internalization. Based on the observation that the localization of CHT1 to the plasma membrane is transient, we propose that acetylcholine synthesis may be influenced by processes that lead to the attenuation of constitutive CHT1 endocytosis. 相似文献
6.
Horenkamp FA Breuer S Schulte A Lülf S Weyand M Saksela K Geyer M 《Traffic (Copenhagen, Denmark)》2011,12(7):867-877
The human immunodeficiency virus 1 (HIV-1) Nef protein is a pathogenicity factor required for effective progression to AIDS, which modulates host cell signaling pathways and T-cell receptor internalization. We have determined the crystal structure of Nef, allele SF2, in complex with an engineered SH3 domain of human Hck showing unnaturally tight binding and inhibitory potential toward Nef. This complex provides the most complete Nef structure described today, and explains the structural basis of the high affinity of this interaction. Intriguingly, the 33-residue C-terminal flexible loop is resolved in the structure by its interactions with a highly conserved hydrophobic groove on the core domain of an adjacent Nef molecule. The loop mediates the interaction of Nef with the cellular adaptor protein machinery for the stimulated internalization of surface receptors. The endocytic dileucine-based sorting motif is exposed at the tip of the acidic loop, giving the myristoylated Nef protein a distinctly dipolar character. The intermolecular domain assembly of Nef provides insights into a possible regulation mechanism for cargo trafficking. 相似文献
7.
p67 is a lysosome-associated membrane protein-like lysosomal type I transmembrane glycoprotein in African trypanosomes. The p67 cytoplasmic domain (CD) is both necessary and sufficient for lysosomal targeting in procyclic insect-stage parasites. The p67CD contains two [DE]XXXL[LI]-type dileucine motifs, which function as lysosomal targeting signals in mammalian cells. Using a green fluorescent protein fusion to the p67 transmembrane and cytoplasmic domains as a reporter system, we investigated the role of these motifs in lysosomal targeting in procyclic trypanosomes. Pulse-chase turnover studies, steady-state immunolocalization and quantitative flow cytometry all gave consistent results. Mutagenesis of the membrane-distal dileucine motif impairs lysosomal trafficking leading to partial appearance of the reporter on the cell surface. Mutagenesis of the membrane-proximal motif has little effect on proper targeting. Simultaneous mutagenesis of both motifs results in quantitative delivery to the cell surface. Thus, the distal motif plays a dominant role, but both dileucine motifs are necessary for maximal lysosomal targeting. Additional studies suggest that the upstream acidic residues in each motif influence lysosomal targeting and may also affect forward trafficking in the early secretory pathway. These results strongly suggest an evolutionary conservation in lysosomal trafficking mechanisms in the ancient eukaryote Trypanosoma brucei. 相似文献
8.
David L. Marks Eileen L. Holicky Christine L. Wheatley Ayala Frumkin Gideon Bach Richard E. Pagano 《Traffic (Copenhagen, Denmark)》2012,13(4):565-575
The targeting of lysosomal transmembrane ( TM ) proteins from the Golgi apparatus to lysosomes is a complex process that is only beginning to be understood. Here, the lysosomal targeting of mucolipin‐1 ( M coln1), the TM protein defective in the autosomal recessive disease, mucolipidosis type IV , was studied by overexpressing full‐length and truncated forms of the protein in human cells, followed by detection using immunofluorescence and immunoblotting. We demonstrated that a 53‐amino acid C ‐terminal region of M coln1 is required for efficient exit from the Golgi . Truncations lacking this region exhibited reduced delivery to lysosomes and decreased proteolytic cleavage of M coln1 into characteristic ~35‐k D a fragments, suggesting that this cleavage occurs in lysosomes. In addition, we found that the co‐expression of full‐length M coln1 with kinase‐inactive protein kinase D ( PKD ) 1 or 2 inhibited M coln1 Golgi exit and transport to lysosomes and decreased M coln1 cleavage. These studies suggest that PKD s play a role in the delivery of some lysosomal resident TM proteins from the Golgi to the lysosomes . 相似文献
9.
Yunkyeoung Kwon Yun Jung Yang Dooyup Jung Byeong Hee Hwang Hyung Joon Cha 《Biopolymers》2015,103(12):659-664
Collagen, silk, and elastin are the fibrous proteins consist of representative amino acid repeats. Because these proteins exhibited distinguishing mechanical properties, they have been utilized in diverse applications, such as fiber‐based sensors, filtration membranes, supporting materials, and tissue engineering scaffolds. Despite their infinite prevalence and potential, most studies have only focused on a few repeat proteins. In this work, the hypothetical protein with a repeat motif derived from the frog Xenopus tropicalis was obtained and characterized for its potential as a novel protein‐based material. The codon‐optimized recombinant frog repeat protein, referred to as ‘xetro’, was produced at a high rate in a bacterial system, and an acid extraction‐based purified xetro protein was successfully fabricated into microfibers and nanofibers using wet spinning and electrospinning, respectively. Specifically, the wet‐spun xetro microfibers demonstrated about 2‐ and 1.5‐fold higher tensile strength compared with synthetic polymer polylactic acid and cross‐linked collagen, respectively. In addition, the wet‐spun xetro microfibers showed about sevenfold greater stiffness than collagen. Therefore, the mass production potential and greater mechanical properties of the xetro fiber may result in these fibers becoming a new promising fiber‐based material for biomedical engineering. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 659–664, 2015. 相似文献
10.
Ribeiro FM Black SA Prado VF Rylett RJ Ferguson SS Prado MA 《Journal of neurochemistry》2006,99(1):1-12
Maintenance of acetylcholine (ACh) synthesis depends on the activity of the high-affinity choline transporter (CHT1), which is responsible for the reuptake of choline from the synaptic cleft into presynaptic neurons. In this review, we discuss the current understanding of mechanisms involved in the cellular trafficking of CHT1. CHT1 protein is mainly found in intracellular organelles, such as endosomal compartments and synaptic vesicles. The presence of CHT1 at the plasma membrane is limited by rapid endocytosis of the transporter in clathrin-coated pits in a mechanism dependent on a dileucine-like motif present in the carboxyl-terminal region of the transporter. The intracellular pool of CHT1 appears to constitute a reserve pool of transporters, important for maintenance of cholinergic neurotransmission. However, the physiological basis of the presence of CHT1 in intracellular organelles is not fully understood. Current knowledge about CHT1 indicates that stimulated and constitutive exocytosis, in addition to endocytosis, will have major consequences for regulating choline uptake. Future investigations of CHT1 trafficking should elucidate such regulatory mechanisms, which may aid in understanding the pathophysiology of diseases that affect cholinergic neurons, such as Alzheimer's disease. 相似文献
11.
Theodora Saridaki Kathrin S. Fröhlich Catherine Braun-Breton Michael Lanzer 《Traffic (Copenhagen, Denmark)》2009,10(2):137-152
The human malaria parasite Plasmodium falciparum exports determinants of virulence and pathology to destinations within the host erythrocyte, including the erythrocyte cytoplasm, plasma membrane and membrane profiles of parasite origin termed Maurer's clefts. Most of the exported proteins contain a conserved pentameric motif termed plasmodial export element (PEXEL)/vacuolar transfer signal (VTS) that functions as a cleavable sorting signal permitting export to the host erythrocyte. However, there are some exported proteins, such as the skeleton-binding protein 1 (PfSBP1) that lack the PEXEL/VTS motif and that are not N-terminally processed, suggesting the presence of alternative sorting signals and/or mechanisms. In this study, we have investigated trafficking of PfSBP1 to the Maurer's clefts. Our data show that the transmembrane domain of PfSBP1 functions as an internal signal sequence for entry into the parasite's secretory pathway and for transport to the parasite plasma membrane. Trafficking beyond the parasite's plasma membrane required additional N-terminal domains, which are characterized by a high negative net charge. Biochemical data indicate that these domains affect the solubility and extraction profile, the orientation of the protein within the membrane and the subcellular localization. Our findings suggest new principles of protein export in P. falciparum -infected erythrocytes. 相似文献
12.
Hrs and the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are involved in the endosomal sorting of membrane proteins into multivesicular bodies and lysosomes or vacuoles. The ESCRT complexes are also required for formation of intraluminal endosomal vesicles and for budding of certain enveloped RNA viruses such as HIV. Here, we show that Hrs binds to the ESCRT-I subunit Tsg101 via a PSAP motif that is conserved in Tsg101-binding viral proteins. Depletion of Hrs causes a reduction in membrane-associated ESCRT-I subunits, a decreased number of multivesicular bodies and an increased size of late endosomes. Even though Hrs mainly localizes to early endosomes and Tsg101 to late endosomes, the two proteins colocalize on a subpopulation of endosomes that contain lyso-bisphosphatidic acid. Overexpression of Hrs causes accumulation of Tsg101 on early endosomes and prevents its localization to late endosomes. We conclude that Hrs mediates the initial recruitment of ESCRT-I to endosomes and, thereby, indirectly regulates multivesicular body formation. 相似文献
13.
The rate at which a membrane protein is internalized from the plasma membrane can be regulated by revealing a latent internalization signal in response to an appropriate stimulus. Internalization of the synaptic vesicle membrane protein, synaptotagmin 1, is controlled by two distinct regions of its intracytoplasmic C2B domain, an internalization signal present in the 29 carboxyterminal (CT) amino acids and a separate regulatory region. We have now characterized the internalization motif by mutagenesis and found that it involves an essential tryptophan in the last beta strand of the C2B domain, a region that is distinct from the AP2-binding site previously described. Internalization through the tryptophan-based motif is sensitive to eps15 and dynamin mutants and is therefore likely to be clathrin mediated. A tryptophan-to-phenylalanine mutation had no effect on internalization of the CT domain alone, but completely inhibited endocytosis of the folded C2B domain. This result suggests that recognition of sorting motifs can be influenced by their structural context. We conclude that endocytosis of synaptotagmin 1 requires a novel type of internalization signal that is subject to regulation by the rest of the C2B domain. 相似文献
14.
摘要:杆状病毒(Baculovirus)是一类在自然界中专一性感染节肢动物的病原微生物,其宿主主要为鳞翅目、双翅目及膜翅目昆虫。杆状病毒感染其宿主细胞时产生多种整合膜蛋白,通过细胞连续膜系统,从内质网、外核膜到内核膜,并最终定位到病毒粒子囊膜上。杆状病毒编码的内核膜分选模序作为一种蛋白分选信号序列,在此过程中发挥关键作用。本文对杆状病毒编码的内核膜分选模序研究进展进行综述,包括其作为一种新型蛋白定位信号的分子作用机理和分选作用模型,以及与杆状病毒经口感染之间的关系。这些研究不仅在分子水平上丰富和补充了人们对蛋白分选机制的认识,而且对于杆状病毒分子生物学研究和应用具有重要的推动意义。 相似文献
15.
Guanwei Wu Zhaoxing Jia Penghuan Rui Hongying Zheng Yuwen Lu Lin Lin Jiejun Peng Shaofei Rao Aiming Wang Jianping Chen Fei Yan 《Molecular Plant Pathology》2022,23(9):1381-1389
Previously we reported that the multifunctional cylindrical inclusion (CI) protein of turnip mosaic virus (TuMV) is targeted to endosomes through the interaction with the medium subunit of adaptor protein complex 2 (AP2β), which is essential for viral infection. Although several functionally important regions in the CI have been identified, little is known about the determinant(s) for endosomal trafficking. The CI protein contains seven conserved acidic dileucine motifs [(D/E)XXXL(L/I)] typical of endocytic sorting signals recognized by AP2β. Here, we selected five motifs for further study and identified that they all were located in the regions of CI interacting with AP2β. Coimmunoprecipitation assays revealed that alanine substitutions in the each of these acidic dileucine motifs decreased binding with AP2β. Moreover, these CI mutants also showed decreased accumulation of punctate bodies, which enter endocytic-tracking styryl-stained endosomes. The mutations were then introduced into a full-length infectious clone of TuMV, and each mutant had reduced viral replication and systemic infection. The data suggest that the acidic dileucine motifs in CI are indispensable for interacting with AP2β for efficient viral replication. This study provides new insights into the role of endocytic sorting motifs in the intracellular movement of viral proteins for replication. 相似文献
16.
Chris MacDonald Stanley Winistorfer Robert M. Pope Michael E. Wright Robert C. Piper 《Traffic (Copenhagen, Denmark)》2017,18(7):465-484
The covalent attachment of ubiquitin onto proteins can elicit a variety of downstream consequences. Attachment is mediated by a large array of E3 ubiquitin ligases, each thought be subject to regulatory control and to have a specific repertoire of substrates. Assessing the biological roles of ligases, and in particular, identifying their biologically relevant substrates has been a persistent yet challenging question. In this study, we describe tools that may help achieve both of these goals. We describe a strategy whereby the activity of a ubiquitin ligase has been enzymatically reversed, accomplished by fusing it to a catalytic domain of an exogenous deubiquitinating enzyme. We present a library of 72 “anti‐ligases” that appear to work in a dominant‐negative fashion to stabilize their cognate substrates against ubiquitin‐dependent proteasomal and lysosomal degradation. We then used the ligase‐deubiquitinating enzyme (DUb) library to screen for E3 ligases involved in post‐Golgi/endosomal trafficking. We identify ligases previously implicated in these pathways (Rsp5 and Tul1), in addition to ligases previously localized to endosomes (Pib1 and Vps8). We also document an optimized workflow for isolating and analyzing the “ubiquitome” of yeast, which can be used with mass spectrometry to identify substrates perturbed by expression of particular ligase‐DUb fusions. 相似文献
17.
18.
The Golgi-localized, gamma-ear-containing, ADP ribosylation factor-binding family of monomeric clathrin adaptors (GGAs) is known to bind cargo molecules through short C-terminal peptide motifs conforming to the sequence DXXLL (X = any amino acid), while the heterotetrameric adaptors AP-1 and AP-2 utilize a similar but discrete sorting motif of the sequence [D,E]XXXL[L,I]. While it has been established that a single cargo molecule may contain either or both types of these acidic cluster-dileucine (AC-LL) sorting signals, there are no examples of cargo with overlapping GGA and AP-1/AP-2-binding motifs. In this study, we report that the cytosolic tail of low-density lipoprotein receptor-related protein (LRP)9 contains a bifunctional GGA and AP-1/AP-2-binding motif at its carboxy-terminus (EDEPLL). We further demonstrate that the internal EDEVLL sequence of LRP9 also binds to GGAs in addition to AP-2. Either AC-LL motif of LRP9 is functional in endocytosis. These findings represent the first study characterizing the trafficking of LRP9 and also have implications for the identification of additional GGA cargo molecules. 相似文献
19.
Ricin is synthesised as an ER-targeted precursor containing an enzymatic A chain and a galactose-binding B chain separated by a 12-amino acid linker propeptide. This internal propeptide is known to contain a sequence-specific vacuolar sorting signal whose functionality depends on the presence of an isoleucine residue. Conversion of this isoleucine to glycine completely abolished vacuolar targeting of proricin and led to its secretion. However, when this mutated signal was positioned at the C-terminus of a normally secreted reporter, vacuolar targeting of a significant fraction still occurred. Likewise, when the corrupted linker was C-terminally exposed within its natural context following the mature ricin A chain, and then co-expressed with ricin B chain, toxin heterodimers were still partially transported to tobacco cell vacuoles. By contrast, when placed at the N-terminus of the secreted reporter, or at the N-terminus of ricin B chain for co-expression with ricin A chain, the propeptide behaved most strikingly as a sequence-specific vacuolar targeting signal that, when mutated, resulted in complete secretion of the proteins. It would appear that the position of the linker peptide influences the specificity of its vacuolar targeting function. 相似文献
20.
Prostate specific membrane antigen (PSMA), is a unique membrane bound glycoprotein, which is overexpressed manifold on prostate cancer as well as neovasculature of most of the solid tumors, but not in the vasculature of the normal tissues. This unique expression of PSMA makes it an important marker as well as a large extracellular target of imaging agents. PSMA can serve as target for delivery of therapeutic agents such as cytotoxins or radionuclides. PSMA has two unique enzymatic functions, folate hydrolase and NAALADase and found to be recycled like other membrane bound receptors through clathrin coated pits. The internalization property of PSMA leads one to consider the potential existence of a natural ligand for PSMA. In this review we have discussed the regulation of PSMA expression within the cells, and significance of its expression in prostate cancer and metastasis. 相似文献