首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
β-Galactosidase (β-Galase, EC 3.2.1.23) activity has been detected in a culture medium of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The extracellular β-Galase (β-Galase-II) was purified to electrophoretic homogeneity from the concentrated medium using ammonium sulfate precipitation, chromatography on CM-Sephadex C-50. DEAE-Sepharose CL-6B and Sephacryl S-200HR, and preparative PAGE. The molecular mass of the purified enzyme was estimated to be 65 kDa by Sephacryl S-200HR gel-permeation, and 60 kDa by SDS-PAGE after treatment with SDS and 2-mercaptoethanol. The pI was 6.5. The Km and Vmax values for p -nitrophenyl (PNP)-β-D-galactopyranoside were 0.17 m M and 31.9 μmol (mg protein)-1, h-1, respectively. The optimal activity in McIlvaine's buffer occurred at pH 4.0–4.4. The enzyme activity was inhibited by Co24, Cu2+, Hg2-, p -chloromercuribenzoate (PCMB) and D-galactono-1,4-lactone. The enzyme acted on citrus galactan and larchwood arabinogalactan in an exo-fashion, and was slightly involved in the hydrolysis of an acidic pectic polymer containing arabinosyl and galactosyl residues and in the breakdown of cell walls isolated from carrot cell cultures.  相似文献   

2.
Konno, H., Yamasaki, Y. and Katoh, K. 1987. Purification of an α-L-arabinofurano-sidase from carrot cell cultures and its involvement in arabinose-rich polymer degradation.
An α-L-arabinofuranosidase (α-L-arabinofuranoside arabinofuranohydrolase, EC 3.2.1.55) was isolated from a homogenate of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The buffer-soluble enzyme was purified to homogeneity by a procedure involving ammonium sulfate fractionation, chromatography on DEAE-Sephadex A-50, Sephadex G-150, Con A-Sepharose 4B and CM-Sephadex C-50, and preparative polyacrylamide gel electrophoresis. The size of this enzyme as determined by polyacrylamide gel electrophoresis in the presence of sodium laurylsulfate and by Sephadex G-200 gel filtration was 94 and 110 kDa, respectively. The isoelectric point was at pH 4.7. The Km and Vmax values for p-nitrophenyl α-L-arabinofuranoside were 1.33 mM and 20.2 μimol (mg protein)-1 h-1, respectively. The optimal activity occurred at pH 4.2 with Mcllvaine buffer. The enzyme was stimulated by Ca2+ and Zn2+, whereas it was strongly inhibited by Cu2+, Ag2+, Hg2+, p-chloromercuri-benzoate and L-arabono-l,4-lactone. The enzyme acted on beet arabinan in an exo-fashion. Furthermore, the enzyme was partially involved in the hydrolysis of the ara-binogalactan and pectic polymer purified from carrot cell walls.  相似文献   

3.
Abstract NAD+-glycohydrolase from Streptococcus pyogenes was purified by successive chromatography on CM Sepharose CL-6B, Sephacryl S-200 HR and hydroxyapatite. The purified enzyme possessed synthesis and hydrolysis activities of cyclic ADP-ribose (cADPR), a newly found second messenger for Ca2+ mobilisation, along with cleavage activity of the ribose-nicotinamide bond in NAD+.  相似文献   

4.
Several glycosidase and glycanase activities have been detected in homogenates of rice ( Oryza sativa L. cv. Nipponbare) shoots after successive extraction with K-phosphate (pH 7. 0) and buffer containing 3 M LiCl. The major β-D-galactosidase (EC 3. 2. 1. 23) present in the buffer-soluble protein fraction was purified to electrophoretic homogeneity by a combination of chromatographic techniques including DEAE-Sepharose CL-6B, Sephacryl S-200HR and p -aminophcnyl-β-D-thiogalactopyranoside–Sepharose 4B. Analysis by denaturing gel electrophoresis revealed a single polypeptide chain with an apparent molecular mass of 42 kDa. Similar to the value of 40 kDa estimated for the native protein by gel-permeation. The isoelectric point was pH 6. 0. The Km and Vmax values for p -nitrophenyl (PNP)-β-D-galactopyra-noside were 0. 63 m M and 0. 32 mmol (mg protein)−1 h−1, respectively. Maximum activity in McIlvaine buffer occurred at pH 3. 4, and the activity was inhibited by Ag2+, Cu2+. Hg2+, p -chloromercuribenzoate (PCMB) and D-galactono-l,4-lactone. The enzyme hydrolyzed larchwood arabinogalactan in an exo-fashion, and acted weakly on arabinosyl and galactosyl residue-rich polymer of pectic polysaccharides and cell walls from rice shoots.  相似文献   

5.
Exo-polygalacturonase (exo-PGase, EC 3.2.1.67) activity has been detected in a culture filtrate of cell suspension cultures of carrot ( Daucus carota L. cv. Kintoki). The extracellular exo-PGase was purified to electrophoretic homogeneity using DEAE-Sephadex A-50 ion-exchange chromatography, Sephadex G-150 gel filtration, and preparative polyacrylamide gel electrophoresis (PAGE). The molecular mass of the purified enzyme was calculated to be 48 kDa from Sephadex G-200 gel filtration, and 50 kDa from sodium dodecyl sulfate (SDS)-PAGE after treatment with SDS and 2-mercaptoethanol. The isoelectric point was at pH 6.2. The Km and Vmax values for polygalacturonate (degree of polymerization: 52) were 14.4 μ M and 25.6 μmol (mg protein)−1 h−1, respectively. The optimal activity in McIlvaine's buffer occurred at pH 4.6. The enzyme activity was inhibited by Ba2+, Cu2+, Mn2+ and Hg2+. The enzyme was involved in ca 15% hydrolysis of the acidic polymer purified from carrot pectic polysaccharides, and connected with the release of galacturonic acid. Even after an exhaustive reaction the enzyme had, however, little or no effect on cell walls from carrot cell cultures.  相似文献   

6.
Five glycosidase activities from cell homogenate of carrot ( Daucus carota L. cv. Kintoki) cell cultures were assayed after extraction successively by phosphate buffer (pH 7.0) and the buffer plus 2 M NaCl. A β-galactosidase (EC 3.2.1.23) was isolated in a highly purified state from the buffer-soluble protein fraction by ammonium sulfate fractionation and chromatography on CM-Sephadex C-50, DEAE-Sephadex A-50 and Sephadex G-200. The molecular weight of this enzyme was ca 104 000 and the isoelectric point was pH 7.8. The optimal activity occurred at pH 4.4 with McIlvaine buffer. The Km and Vmax values were 1.67 m M and 201 units (mg protein)−1, respectively, for p -nitrophenyl β- d -galactopyranoside. The enzyme activity was strongly inhibited by Zn2+, Cu2+, Hg2+ and d -galactono-1,4-lactone. The enzyme acted on the β-1,4-linked galactan prepared from citrus pectin in an exo-fashion. Furthermore, the enzyme was slightly involved in the hydrolysis of the pectic polymer and cell walls purified from carrot cell cultures.  相似文献   

7.
Abstract NADP-dependent glutamate dehydrogenase (GDH; E.C.1.4.1.4) was purified from an obligate methylotroph Methylobacillus flagellatum using ammonium sulphate precipitation, DEAE-Sepharose and dye-ligand Procion red HE3B column chromatography and Sephacryl S-200 gel-filtration. The Mr of the native enzyme was estimated to be 300 000 (±5000). The enzyme consists of six identical subunits with an Mr of 47 000 (±3000) (SDS-PAGE). The enzyme has a pH optimum of 8.0 when participating in amination and 9.5 in deamination. Michaelis-Menten kinetics were observed for both reactions. The apparent Km values were 1.33 mM, 0.032 mM, 11.5 mM, 7.0 mM and 0.014 mM for α-ketoglutarate, NADPH, NH4+, glutamate and NADP+, respectively. The enzyme was highly specific for all the substrates and was insensitive to inhibitors. It plays an exclusively anabolic role in the cells.  相似文献   

8.
A novel extracellular β-fructosidase produced by Bacillus stearothermophilus has been identified and purified. The purified enzyme, obtained by using successive QEAE Sepharose fast flow and Sephacryl S300 HR columns, has a 600 kDa relative molecular weight (Mr) and is composed of 60 kDa subunits indicating a multimeric structure. The pH and temperature for optimal activity are 6.5 and 65°C respectively, the enzyme being thermostable at this temperature. The apparent Km values for sucrose and inulin are 3.56 mmol l-1 and 1 mmol l-1 respectively, the total invertase/total inulinase ratio being 4.  相似文献   

9.
An acid phosphatase (EC 3.1.3.2) has been identified and purified from castor bean ( Ricinus communis L., IAC-80 ) seed through sulphopropyl (SP)-Sephadex, diethylaminoethyl (DEAE)-Sephadex, Sephacryl S-200, and Concanavalin A-Sepharose chromatography. The enzyme was purified 2 000-fold to homogeneity, with a final specific activity of 3.8 μkat mg−1 protein. The purified enzyme revealed a single diffuse band with phosphatase activity on nondenaturing polyacrylamide gel electrophoresis, at pH 8.3. The relative molecular mass, determined by high-performance liquid chromatography (HPLC), was found to be 60 kDa. The acid phosphatase had a pH optimum of 5.5 and an akpparent Km value for p -nitrophenylphosphate of 0.52 m M . The enzyme-catalyzed reaction was inhibited by inorganic phosphate, fluoride, vanadate, molybdate, p -chloromercuribenzoate ( p CMB), Cu2+ and Zn2+. The strong inhibition by p CMB, Cu2+ and vanadate suggests the presence of sulfhydryl groups essential for catalysis. The castor bean enzyme also recognized tyrosine-phosphate and inorganic pyrophosphate (KPPi) as substrate. The highest specificity constant (Vmax/Km) was observed with KPPi, making it a potential physiological substrate.  相似文献   

10.
M.E.FÁREZ-VIDAL, A. FERNÁNDEZ-VIVAS, F. GONZÁLEZ AND J.M. ARIAS. 1995. The extracellular amylase activity from Myxococcus coralloides D was purified by Sephacryl S-200 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-25. The molecular weight was estimated by SDS-PAGE and by gel filtration as 22.5 kDa. The optimum temperature was 45°C. The pH range of high activity was between 6.5 and 8.5, with an optimum at pH 8.0. Activity was strongly inhibited by Hg2+, Zn2+, Cu2+, Ag+, Pb2+, Fe2+ and Fe3+, EDTA and glutardialdehyde, but was less affected by Ni2+ and Cd2+. Li+, Mg2+, Ba2+, Ca2+, N -ethylmaleimide, carbodiimide and phenyl methyl sulphonyl fluoride had almost no affect. The K m (45°C, pH 8) for starch hydrolysis was 2.0 times 10-3 gl-1. Comparison of the blue value-reducing curves with the time of appearance of maltose identified the enzyme produced by M. coralloides D as an α-amylase.  相似文献   

11.
The yeast Torulaspora delbrueckii IFO 1255 was selected as the strain fermenting melibiose from 35 strains of Torulaspora species. The strain IFO 1255 produced extracellular and cell-associated forms of α-galactosidase when grown on either melibiose or galactose as the sole carbon source. Most of the enzyme was located outside of the cell membrane: the periplasmic space, or cell walls, or both. α-Galactosidase was purified to homogeneity from the cell-free extract of the strain IFO 1255 by acid treatment and column chromatography on DEAE-Toyopearl 650M and Butyl-Toyopearl 650M. The molecular weight of the purified enzyme was estimated to be 88 000 by SDS-polyacrylamide gel electrophoresis and 530 000 by gel filtration. The enzyme contained 50% of its molecular weight as carbohydrate. Optimum pH and temperature were 4.5–5.5 and 55°C, respectively. The enzyme was inhibited strongly by Ag2+, Hg2+ and Cu2+ each at 1 mmol 1-1. The K m (μmol 1-1) for p -, o -, m -nitrophenyl α-D-galactopyranoside, melibiose, raffinose and stachyose were 2.8, 1.3, 2.8, 4.2, 170 and 230, respectively, and V max (μmol min-1 mg protein-1) for those substrates were 310, 140, 21, 22, 30 and 44, respectively. The properties of α-galactosidase from T. delbrueckii IFO 1255 were similar to those from the related species, Saccharomyces cerevisiae.  相似文献   

12.
An acid phosphatase (EC 3.1.3.2.) from the embryonic axes of chickpea seeds ( Cicer arietinum L. cv. Castellana) was purified by ammonium sulphate precipitation, chromatography on Sephacryl S-200 and polyacrylamide gel electrophoresis. The preparation has an apparent molecular weight of 39 kDa, pH optimum for p -nitrophenylphosphate hydrolysis of 5.25, and K m of 0.57 m M . The enzyme hydrolyzed all the mono- and di-phosphorylated sugars tested, but had no effect on ATP, ADP, AMP and phosphoenolpyruvate. Phosphate was a competitive inhibitor. Mg2+. Ca2+, Hg2+, Fe3+, arsenate, K+ and Zn2+ were inhibitory. Mn2+, dithiothreitol and EDTA had no effect, and polyamines were activators.  相似文献   

13.
Amylase activity extracted from tulip ( Tulipa gesneriana L. cv. Apeldoorn) bulbs that had been stored for 6 weeks at 4°C was resolved to 3 peaks by anion-exchange chromatography on diethylaminoethyl-Sephacel. These 3 amylases exhibited different relative mobilities during non-denaturing polyacrylamide gel electrophoresis (PAGE). The most abundant amylase form (amylase I) was purified to apparent homogeneity using hydrophobic interaction chromatography, gel filtration and chromatofocusing. The apparent molecular mass of the purified amylase was estimated to be 51 kDa by sodium dodecyl sulfate-PAGE and 45 kDa by gel filtration chromatography. The purified amylase was determined to be an endoamylase (EC 3.2.1.1) based on substrate specificity and end-product analysis. The enzyme had a pH optimum of 6.0 and a temperature optimum of 55°C. The apparent Km value with soluble starch (potato) was 1.28 mg ml−1. The presence of Ca2+ increased the activity and thermal stability of the enzyme. The presence of dithiothreitol enhanced the activity, while β -mercaptoethanol and reduced glutathione had no significant effect. When pre-incubated in the absence of the substrate, N-ethylmaleimide and 5,5'-dithiobis-(2-nitrobenzoic acid) partially inhibited the enzyme. α -cyclodextrins or β -cyclodextrins had no effect on enzyme activity up to 10 m M . In addition to CaCl2, CoCl2 slightly enhanced activity, while MgCl2 and MnCl2 had no significant effect at a concentration of 2 m M . ZnCl2, CuSO4, AgNO3 and EDTA partially inhibited enzyme activity, while AgNO3 and HgCl2 completely inhibited it at 2.0 m M .  相似文献   

14.
Thermomonospora curvata contains α-1,4-glucosidase that is induced duringgrowth on maltose and starch. Maltose acts as an inducer of α-glucosidase even in thepresence of glucose. An intracellular thermostable α-glucosidase from T. curvata wasdetected in the crude extract on SDS-PAGE by means of modified colour reaction afterrenaturation of the enzyme. The enzyme was purified 59-fold to homogeneity with a yield of17·7% by a combination of ion-exchange and hydrophobic interaction chromatography andgel filtration. The enzyme has an apparent molecular mass of 60±1 kDa and isoelectric point4·1. The α-glucosidase exhibits optimum activity at pH 7·0–7·5 and54°C. The activity is inhibited by heavy metals and is positively affected by Ca2+ andMg2+. The enzyme hydrolyses maltose, sucrose, p-nitrophenyl-α- d -glucopyranoside and maltodextrins from maltotriose up to maltoheptaose with a decreasingefficiency. The Km for maltose and p-NPG are 12 and 2·3 mmol l−1,respectively.  相似文献   

15.
A new alginate lyase-producing micro-organism, designated as Bacillus sp. strain ATB-1015, was effectively isolated from soil samples pretreated for 3 months with a substrate of the enzyme, sodium alginate. Alginate lyase activity was assayed by the degrading activity of biofilm on Teflon sheet discs, which was formed by a mucoid strain of Pseudomonas aeruginosa PAM3 selected from clinical isolates. The extracellular alginate lyase was precipitated with ammonium sulphate from the culture broth, and purified by gel filtration and anion exchange chromatography. The molecular weight of the lyase was estimated to be 41 kDa by SDS polyacrylamide gel electrophoresis and Sephacryl S-200 HR column chromatography. The optimum pH and temperature for the enzyme activity were around 7·5 and 37 °C, respectively, and the Km value was 0·17% with the substrate, sodium alginate. The lyase activity was completely inhibited by treatment with 1 mmol l−1 of EDTA and the decreased activity was almost completely recovered by the addition of 2 mmol l−1 of CaCl2. The activity was not affected by treatment with the protein denaturants, 0·01 mol l−1 of SDS or 1 mmol l−1 of urea. The lyase had substrate specificity for both the poly-guluronate and poly-mannuronate units in the alginate molecule.  相似文献   

16.
吴茵  陈敏  郭倩 《菌物学报》2016,35(6):705-713
分离纯化刺芹侧耳Pleurotus eryngii芳基醇氧化酶,并探究其酶学性质。通过硫酸铵盐沉、DEAE-Sepharose Fast Flow弱阴离子交换层析、Sephacryl S-200 High Resolution凝胶过滤层析和Source 15Q强阴离子交换层析,得到纯化的单一酶。经肽指纹图谱鉴定,确定其为芳基醇氧化酶,酶活回收率25.5%,纯化倍数38.2。结合SDS-PAGE和IEF-PAGE分析,确定其分子量和等电点分别为70kDa和4.2。以藜芦醇为底物,该酶最适反应pH为6.0,最适反应温度为70℃,金属离子Zn2+、Fe2+和Cu2+对芳基醇氧化酶的活性抑制作用明显,KmVmax分别为0.921mmol/L和80U/mg。  相似文献   

17.
Adenine phosphoribosyltransferase (APRT; EC 2. 4,2. 7) from Arabidopsis thaliana was purified approximately 3800-fold, to apparent homogeneity. The purification procedure involved subjecting a leaf extract to heat denaturation, (NH4)2SO4 precipitation, Sephadex G-25 salt separation, ultracentrifugation and liquid chromatography on Diethylaminoethyl Sephacel, Phenyl Sepharose CL-4B, Blue Sepharose CL-6B and adenosine 5'-monophosphate-Agarose. The purified APRT was a homodimer of approximately 54 kDa and it had a specific activity of approximately 300 μmol (mg total protein)-1 min-1. Under standard assay conditions, the temperature optimum for APRT activity was 65°C and the pH optimum was temperature dependent. High enzyme activity was dependent upon the presence of divalent cations (Mn2+ or Mg2+). In the presence of MnCl2+ other divalent cations (Mg2+, Ca2+, Ba2+, Hg2+ and Cd2+) inhibited the APRT reaction. Kinetic studies indicated that 5-phosphoribose-1-pyrophosphate (PRPP) caused substrate inhibition whereas adenine did not. The Km for adenine was 4.5±1.5 μ M , the Km for PRPP was 0.29±0.06 m M and the Ki for PRPP was 1.96±0.45 m M . Assays using radiolabelled cytokinins showed that purified APRT can also catalyze the phosphoribosylation of isopentenyladenine and benzyladenine. The Km for benzyladenine was approximately 0.73±0.06 m M  相似文献   

18.
A procedure for the partial purification of a non-specific alkaline phosphatase (EC 3.1.3.1.) from the embryonic axes of chick-pea seeds is described. Ammonium sulphate precipitation, DEAE-cellulase chromatography, Sephacryl S-200 chroma-tography and polyacrylamide gel electrophoresis are the most important steps. The molecular weight of this non-specific enzyme, as determined by Sephacryl S–200 gel filtration and SDS–polyacrylamide gel electrophoresis, was estimated as being 68 and 78 kDa respectively; the optimum pH for p-nitrophenylphosphate hydrolysis was 7.5, and the Km for this artificial substrate was 0.5 mM. The enzyme catalyzes the hydrolysis of a variety of organic phosphate esters. The best substrates are: phos-phoenolpymvate (Km= 2.4 m M ), NADP+ (Km= 4.0 m M ), 5'-AMP (Km= 4.5 m M ), 5'-ADP (Km= 6.1 m M ) and ribose-5P (Km= 5.8 m M ); but it is unable to hydrolyze 5'-ATP, phosphocreatine and tripolyphosptiate. Phospate was a competitive inhibitor. Zn2+, K+, Hg2+ and Mo6+ were strong inhibitors, whereas F and Ca2+ inhibited weakly; Co2+ and Ni2+ were activators.  相似文献   

19.
Abstract The effects of some physico-chemical parameters on production of extracellular α-L-arabinofuranosidase by Aspergillus nidulans were examined. Highest levels of α-L-arabinofuranosidase were generated with cultures grown on 1% (w/v) purified beet pulp arabinan at 30°C and at an initial pH of 7.0. The enzyme was shown to be very sensitive to the action of proteases. Zymogram overlay of a protein profile obtained by SDS-PAGE revealed the occurrence of a band ( M r 36 000) exhibiting α-L-arabinofuranosidase activity. The isoelectric pH of the enzyme lay near 4.3. Temperature and pH optima for the activity of crude α-L-arabinofuranosidase preparations were 55°C and 5.5, respectively. Enzyme activity was greatly reduced by thiol reagents such as Hg2+ and p -hydroxymercuribenzoate and showed a K m value of 2.7 mM on p -nitrophenyl α-L-arabinofuranoside as substrate.  相似文献   

20.
α -Mannosidase (EC 3.2.1.24) from rice dry seeds was purified to homogeneity. Optimum pH and Km for pNP- α -Man hydrolysis were pH 4.3–4.5 and 1.04 m M , respectively. The enzyme digested mannobioses such as Man α -1,2Man, Man α -1,6Man, Man α -1,3Man but Man α -1,4Man. Zn2+ ion was required for the activity, whereas EDTA and swainsonine inhibited the activity by 80 and 96%, respectively. The rice storage protein, glutelin was prepared and its basic subunits were shown to have high mannose-type sugar chains by two-dimensional mapping using NH2-P and C18 silica columns. They were Man9GlcNAc2, Man8GlcNAc2, Man7GlcNAc2, Man6GlcNAc2 and Man5GlcNAc2. All these oligosaccharides were digested by the purified α -mannosidase, and Man-GlcNAc2 and mannose were formed. Glycopeptides, having these high mannose-type sugar chains, could also be digested by the α -mannosidase. Subunits were prepared from glutelin basic subunit and the richest subunit among them, subunit 2 (isoform 2), was digested by the α -mannosidase. Isoform 2 was digested by V8 protease only partially and slowly. However, isoform 2, pre-treated with the α -mannosidase, was rapidly and completely digested by V8 protease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号