首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LUCA-15/RBM5 is a putative tumour suppressor. The gene encodes a number of alternative RNA splice variants with differing abilities to either enhance or suppress apoptosis, and it is likely that this ability to modulate apoptosis is central to the putative tumour suppressor activity of LUCA-15. This report demonstrates for the first time that expression from the LUCA-15 locus modulates apoptosis triggered by the death-inducing ligand TRAIL. Using Jurkat T lymphoblastic leukemia cells, LUCA-15 expression was shown to enhance not only TRAIL but TNF-alpha- and Fas-mediated apoptosis. LUCA-15, therefore, has the ability to lower the apoptotic threshold of multiple receptor-initiated death-inducing signals. Of note, sensitisation of the Jurkat cells to TRAIL was shown to depend on new protein synthesis, since no enhancement of apoptosis was observed when cells were exposed to both TRAIL and the protein synthesis inhibitor cycloheximide. This result suggests that LUCA-15 does not act independently to regulate apoptosis, but modulates a process that requires additional, newly synthesized protein. These results may explain the putative role of LUCA-15 as a tumour suppressor, suggesting that lack of functional LUCA-15 could provide the means by which malignant T cells escape receptor-initiated apoptotic signals.  相似文献   

2.
The MCF-7 human breast carcinoma cell line is widely used as a model system by breast cancer researchers and cell biologists investigating apoptosis. Since its establishment 30 years ago, from a patient with metastatic breast cancer, the original MCF-7 cell population has undergone genetic drift to such an extent that numerous genetically diverse sublines now exist. For instance, it has been reported that MCF-7 cells have lost the region 3p21.3, to which the apoptosis regulatory protein and putative tumour suppressor LUCA-15 (also called RBM5 and H37) maps; however, LUCA-15 has been cloned from MCF-7 cells, and LUCA-15 expression analyses have been conducted using MCF-7 cells. To address this discrepancy, we characterized three MCF-7 sublines by Western blot, RT-PCR and finally genomic PCR analysis, and determined that one of the three had lost the LUCA-15 gene. Interestingly, loss of LUCA-15 was positively correlated with decreased susceptibility to the death-inducing ligand TNF-alpha. Subsequent overexpression of exogenous LUCA-15 was shown to enhance TNF-alpha-mediated apoptosis, suggesting that LUCA-15 may play a role in regulating the susceptibility of breast cancer cells to drug-induced apoptosis. These results not only reinforce the necessity of MCF-7 subline characterization, but provide the first evidence of an apoptotic modulatory role for LUCA-15 in a non-T cell line.  相似文献   

3.
ABSTRACT: BACKGROUND: The loss of tumor suppressor gene (TSG) function is a critical step in the pathogenesis of human lung cancer. RBM5 (RNA-binding motif protein 5, also named H37/LUCA-15) gene from chromosome 3p21.3 demonstrated tumor suppressor activity. However, the role of RBM5 played in the occurrence and development of lung cancer is still not well understood. METHOD: Paired non-tumor and tumor tissues were obtained from 30 adenocarcinomas. The expression of RBM5 mRNA and protein was examined by RT-PCR and Western blot. A549 cell line was used to determine the apoptotic function of RBM5 in vitro. A549 cells were transiently transfected with pcDNA3.1-RBM5. AnnexinV analysis was performed by flow cytometry. Expression of Bcl-2, cleaved caspase-3, caspase-9 and PAPP proteins in A549 lung cancer cells and the A549 xenograft BALB/c nude mice model was determined by Western blot. Tumor suppressor activity of RBM5 was also examined in the A549 xenograft model treated with pcDNA3.1-RBM5 plasmid carried by attenuated Salmonella typhi Ty21a. Result The expression of RBM5 mRNA and protein was decreased significantly in adenocarcinoma tissues compared to that in the non-tumor tissues. In addition, as compared to the vector control, a significant growth inhibition of A549 lung cancer cells was observed when transfected with pcDNA3.1-RBM5 as determined by cell proliferation assay. We also found that overexpression of RBM5 induced both early and late apoptosis in A549 cells using AnnexinV/PI staining as determined by flow cytometry. Furthermore, the expression of Bcl-2 protein was decreased, whereas the expression of cleaved caspase-3, caspase-9 and PARP proteins was significantly increased in the RBM5 transfected cells; similarly, expression of decreased Bcl-2 and increased cleaved caspase-3 proteins was also examined in the A549 xenograft model. More importantly, we showed that accumulative and stable overexpression of RBM5 in the A549 xenograft BALB/c nude mice model significantly inhibited the tumor growth rate in vivo as compared to that in the control. CONCLUSION: Our study demonstrates that RBM5 can inhibit the growth of lung cancer cells and induce apoptosis both in vitro and in vivo, which suggests that RBM5 might be used as a potential biomarker or target for lung cancer diagnosis and chemotherapy. Moreover, we propose a novel animal model set up in BALB/c nude mice treated with attenuated Salmonella as a vector carrying plasmids to determine RBM5 function in vivo.  相似文献   

4.
RBM5/LUCA-15/H37 is a nuclear SR-related RNA binding protein with the ability to modulate both apoptosis and the cell cycle, and retard tumour formation. How RBM5 functions to carry out these, potentially interrelated, biological activities is unknown. Since reversible phosphorylation has been shown to play an important role in the regulation of SR protein function, apoptosis and cell cycle control, in an attempt to elucidate the underlying mechanisms regulating RBM5 function, the phosphorylation status of RBM5 was investigated. Whole cell lysate from growing cell cultures was treated with the broad phosphatase spectrum of CIP, resulting in a decrease in the molecular mass of RBM5. A similar decrease in molecular mass, of a subset of RBM5 proteins, was observed during growth factor deprivation, in a manner consistent with partial dephosphorylation of RBM5. Molecular mass increased upon growth factor addition, demonstrating that this apoptosis-associated alteration in molecular mass was a reversible process. Immunoprecipitation and mutagenesis experiments strongly suggested that phosphotyrosines are not present in RBM5 under normal growth conditions, and that serine 69 is phosphorylated, but not by Akt kinase. Taken together, these results suggest that reversible phosphorylation of RBM5 is a mechanism capable of regulating RBM5 participation in modulating apoptosis, and perhaps tumour suppression.  相似文献   

5.
RNA binding motif (RBM) proteins: A novel family of apoptosis modulators?   总被引:2,自引:0,他引:2  
RBM5 is a known modulator of apoptosis, an RNA binding protein, and a putative tumor suppressor. Originally identified as LUCA-15, and subsequently as H37, it was designated "RBM" (for RNA Binding Motif) due to the presence of two RRM (RNA Recognition Motif) domains within the protein coding sequence. Recently, a number of proteins have been attributed with this same RBM designation, based on the presence of one or more RRM consensus sequences. One such protein, RBM3, was also recently found to have apoptotic modulatory capabilities. The high sequence homology at the amino acid level between RBM5, RBM6, and particularly, RBM10 suggests that they, too, may play an important role in regulating apoptosis. It is the intent of this article to ammalgamate the data on the ten originally identified RBM proteins in order to question the existence of a novel family of RNA binding apoptosis regulators.  相似文献   

6.
In a recent report, it has been postulated that the ubiquitous RBM proteins might constitute a novel family of apoptosis modulators. We measured the expression of the X-chromosome RBM genes (RBMX, RBM3, and RBM10) in 122 breast cancers by means of differential RT-PCR. Using the same method, we also studied the expression of the apoptosis-related genes Bcl-2 and Bax. Markers of hormone dependence (estrogen and progesterone receptors), proliferation (Ki67 and DNA-ploidy), angiogenesis (VEGF and CD105), as well as oncogene (c-erb-B2), and tumor suppressor gene (p53) expression were also analyzed. The expression of all X-chromosome RBM genes was significantly associated with the expression of the proapoptotic Bax gene (RBMX, P=0.039; RBM3, P<0.001; RBM10 large variant, P<0.001; RBM10 small variant, P<0.001). Furthermore, the expression of both RBM10 variants was significantly associated with the expression of the VEGF gene (large variant, P=0.004; small variant, P=0.003). We also found an association of borderline significance (P=0.05) between the expression of RBM3, the large variant of RBM10 and wild-type p53. Expression of the small RBM10 variant, finally, was associated with high proliferation of the tumors (Ki67>or=20%; P=0.037). The expression of both RBM10 variants seems to be interdependent to a significant degree (r=0.26, P=0.006). From these results, it seems that the X-chromosome, through its RBM genes, plays a formerly unknown role in the regulation of programmed cell death (apoptosis) in breast cancer.  相似文献   

7.
8.
The mechanism of tumor suppressor action of the fragile histidine triad (FHIT) gene is unknown. Disruption of cell cycle regulation leads to the tumor formation and many tumor suppressor genes suppress tumorigenesis through their effect on cell cycle regulation. We examined the expression of FHIT during the cell cycle, and determined whether overexpression of FHIT affects cell cycle kinetics and apoptosis. The FHIT cDNA was cloned into the ecdysone-inducible expression vector in both the sense and antisense orientations. Overexpression of the sense or antisense construct did not affect cell proliferation, cell cycle distribution or apoptosis in human 293T cells. Analysis of the FHIT expression in 293T cells collected at various cell cycle phases showed that the expression of FHIT is not under cell cycle regulation. These results indicate that the tumor suppressor activity of the FHIT gene may be independent of an effect on the cell cycle and apoptosis mechanisms.  相似文献   

9.
10.
RBM5 (RNA-binding motif protein 5), a nuclear RNA binding protein, is known to trigger apoptosis and induce cell cycle arrest by regulating the activity of the tumor suppressor protein p53. However, its expression and function in spinal cord injury (SCI) are still unknown. To investigate whether RBM5 is involved in central nervous system injury and repair, we performed an acute SCI model in adult rats in this study. Our results showed RBM5 was unregulated significantly after SCI, which was accompanied with an increase in the levels of apoptotic proteins such as p53, Bax, and active caspase-3. Immunofluorescent labeling also showed that traumatic SCI induced RBM5 location changes and co-localization with active caspase-3 in neurons. To further probe the role of RBM5, a neuronal cell line PC12 was employed to establish an apoptotic model. Knockdown of RBM5 apparently decreased the level of p53 as well as active caspase-3, demonstrating its pro-apoptotic role in neurons by regulating expressions of p53 and caspase-3. Taken together, our findings indicate that RBM5 promotes neuronal apoptosis through modulating p53 signaling pathway following SCI.  相似文献   

11.
Functional screening of a human bone marrow cDNA library for suppressors of CD95-mediated apoptosis has led to the identification of a 326 bp fragment (Je2), which not only suppresses CD95-induced apoptosis in Jurkat T-cells, but maps to 3p21.3, to an intronic region of the candidate TSG LUCA-15 locus. Here we report that overexpression of Je2 in CEM-C7 T-cell line is able to suppress CD95-mediated apoptosis, and apoptosis induced by TNF and the glucocorticoid analogue dexamethasone, but was not able to suppress death induced by the topoisomerase II inhibitor etoposide. Je2 inhibition of apoptosis is also associated with a change in the pattern of expression of LUCA-15-encoded proteins. Je2 might therefore function to inhibit apoptosis by destabilising message expression of LUCA-15 and promoting the degradation of its RNA and protein. This suppression of apoptosis by Je2 also appears to be associated with up-regulation of the apoptosis inhibitory protein Bcl-xL. This study confirms that Je2 is a selective inhibitor of cell death and further implicates LUCA-15 gene locus in the control of apoptosis.  相似文献   

12.
RBM5 is a known putative tumor suppressor gene that has been shown to function in cell growth inhibition by modulating apoptosis. RBM5 also plays a critical role in alternative splicing as an RNA binding protein. However, it is still unclear which domains of RBM5 are required for RNA binding and related functional activities. We hypothesized the two putative RNA recognition motif (RRM) domains of RBM5 spanning from amino acids 98–178 and 231–315 are essential for RBM5-mediated cell growth inhibition, apoptosis regulation, and RNA binding. To investigate this hypothesis, we evaluated the activities of the wide-type and mutant RBM5 gene transfer in low-RBM5 expressing A549 cells. We found that, unlike wild-type RBM5 (RBM5-wt), a RBM5 mutant lacking the two RRM domains (RBM5-ΔRRM), is unable to bind RNA, has compromised caspase-2 alternative splicing activity, lacks cell proliferation inhibition and apoptosis induction function in A549 cells. These data provide direct evidence that the two RRM domains of RBM5 are required for RNA binding and the RNA binding activity of RBM5 contributes to its function on apoptosis induction and cell growth inhibition.  相似文献   

13.
14.
RNA activation (RNAa) is a mechanism of gene activation triggered by promoter-targeted small double-stranded RNA (dsRNA), also known as small activating RNA (saRNA). p21(WAF1/CIP1) (p21) is a putative tumor suppressor gene due to its role as a key negative regulator of the cell cycle and cell proliferation. It is frequently downregulated in cancer including hepatocellular carcinoma (HCC), but is rarely mutated or deleted, making it an ideal target for RNAa-based overexpression to restore its tumor suppressor function. In the present study, we investigated the antigrowth effects of p21 RNAa in HCC cells. Transfection of a p21 saRNA (dsP21-322) into HepG2 and Hep3B cells significantly induced the expression of p21 at both the mRNA and protein levels, and inhibited cell proliferation and survival. Further analysis of dsP21-322 transfected cells revealed that dsP21-322 arrested the cell cycle at the G(0)/G(1) phase in HepG2 cells but at G(2)/M phase in Hep3B cells which lack functional p53 and Rb genes, and induced both early and late stage apoptosis by activating caspase 3 in both cell lines. These results demonstrated that RNAa of p21 has in vitro antigrowth effects on HCC cells via impeding cell cycle progression and inducing apoptotic cell death. This study suggests that targeted activation of p21 by RNAa may be explored as a novel therapy for the treatment of HCC.  相似文献   

15.
Niu Z  Jin W  Zhang L  Li X 《FEBS letters》2012,586(7):977-983
RNA binding motif protein 5 (RBM5) is a candidate tumor suppressor gene. Recent studies showed that RBM5 functions as an alternative splicing regulator of apoptosis-related genes. Here, we identify DHX15 and PRP19, two spliceosome components, as novel RBM5-interacting partners. We then show that the G-patch domain of RBM5 is indispensable for its ability to interact with DHX15. Strikingly, we find that RBM5 stimulates the helicase activity of DHX15 in a G patch domain-dependent manner in vitro. Helicase activities play critical roles in modulating pre-mRNA splicing. Our findings thus suggest a new mechanism underlying the regulatory roles of RBM5 in pre-mRNA splicing.  相似文献   

16.
Hepatocellular carcinoma (HCC) is regarded as one of the most common malignancies worldwide leading to cancer-related death. Long noncoding RNAs (lncRNAs) are a critical modulator affecting HCC progression. Whereas, the pathogenesis of lncRNA RBM5-AS1 in the development of HCC remains unclear. Quantitative RT-PCR or western blot assays were applied to detect the expression of genes and proteins, respectively. The proliferation and metastasis abilities were assessed using Cell counting kit-8 (CCK-8), EdU and transwell assays. RNA immunoprecipitation (RIP) experiment was employed to validate the molecular interactions. RBM5-AS1 is highly expressed in HCC tissues and cell lines, especially in Hep3B and HepG2 cells. RBM5-AS1 knockdown dramatically restrains cell proliferation, invasion and migration of HCC cells. Importantly, RBM5-AS1 acts as an epigenetic regulator to elevate the H3K27me3 level of miR-132/212 promoter regions via recruiting PRC2 (EZH2, SUZ12, EED), and eventually reducing miR-132/212 expressions. The recovery experiments demonstrated that downregulation of miR-132/212 markedly eliminate the antitumor effects mediated by RBM5-AS1 silencing in HCC cells. The data of this work illustrate that RBM5-AS1 acts as an epigenetic regulator to promote the HCC progression by repressing miR-132/212 expressions, which would provide a new insight for understanding the action mechanism of RBM5-AS1 in HCC development.  相似文献   

17.
18.
Cold-inducible RNA-binding protein (RBM3) is suggested to be involved in the regulation of skeletal muscle mass. Cell death pathways are implicated in the loss of muscle mass and therefore the role of RBM3 in muscle apoptosis in C(2)C(12) myoblasts was investigated in this study. RBM3 overexpression was induced by either cold shock (32°C exposure for 6 h) or transient transfection with a myc-tagged RBM3 expression vector. Cell death was induced by H(2)O(2) (1,000 μM) or staurosporine (StSp, 5 μM), and it was shown that cold shock and RBM3 transfection were associated with attenuation of morphological changes and an increase in cell viability compared with normal temperature or empty vector, respectively. No changes in proliferation were observed with either cold shock or RBM3 transfection. DNA fragmentation was not increased in response to H(2)O(2), and a cell permeability assay indicated that cell death in response to H(2)O(2) is more similar to necrosis than apoptosis. RBM3 overexpression reduced apoptosis and the collapse of the membrane potential in response to StSp. Moreover, the increase in caspase-3, -8, and -9 activities in response to StSp was returned to control levels with RBM3 overexpression. These results indicate that increased RBM3 expression decreases muscle cell necrosis as well as apoptosis and therefore RBM3 could potentially serve as an intervention for the loss of muscle cell viability during muscle atrophy and muscle diseases.  相似文献   

19.
Tuberin negatively affects BCL-2’s cell survival function   总被引:2,自引:0,他引:2  
Summary. Uncontrolled cell cycle progression and cell growth are key properties of tumor cells. The tumor suppressor genes responsible for the autosomal dominantly inherited disease tuberous sclerosis (TSC) have been demonstrated to control both, cell cycle and cell size regulation. Hamartin, encoded by TSC1, and tuberin, encoded by TSC2, form a complex, of which tuberin is assumed to be the functional component. Loss of TSC genes function triggers hamartoma development in TSC patients. However, in vivo mostly tumor cell development is rapidly terminated via apoptosis. BCL-2, the founding member of the BCL-2 family of proteins, is well known for its anti-apoptotic properties. Here we show that pro-apoptotic actinomycin D cannot interfere with BCL-2’s cell survival functions. However, we found tuberin to negatively regulate BCL-2’s anti-apoptotic effects on low serum-induced apoptosis. These findings warrant further investigations to elucidate the molecular mechanism underlying tuberin’s negative effects on cell survival.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号