首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A minimal domain responsible for Munc13 activity   总被引:1,自引:0,他引:1  
Munc13 proteins are essential in neurotransmitter release, controlling the priming of synaptic vesicles to a release-ready state. The sequences responsible for this priming activity are unknown. Here we identify a large alpha-helical domain of mammalian Munc13-1 that is autonomously folded and is sufficient to rescue the total arrest in neurotransmitter release observed in hippocampal neurons lacking Munc13s.  相似文献   

2.
The amyloid precursor protein (APP) gives rise toc beta-amyloid peptides, which are the main constituents of senile plaques in brains of Alzheimer's disease patients. Non-amyloidogenic processing of the APP can be stimulated by phorbol esters (PEs) and by intracellular diacylglycerol (DAG) generation. This led to the hypothesis that classical and novel protein kinase Cs (PKCs), which are activated by DAG/PEs, regulate APP processing. However, in addition to PKCs, there are other DAG/PE receptors present in neurons that may participate in the modulation of APP processing. Munc13-1, a presynaptic protein with an essential role in synaptic vesicle priming, represents such an alternative target of the DAG second messenger pathway. Using Munc13-1 knock-out mice and knock-in mice expressing a Munc13-1(H567K) variant deficient in DAG/PE binding, we determined the relative contributions of PKCs and Munc13-1 to PE-stimulated secretory APP processing. We establish that, in addition to PKC, Munc13-1 significantly contributes to the regulation of secretory APP metabolism.  相似文献   

3.
Rab3A is a small G-protein of the Rab family that is involved in the late steps of exocytosis. Here, we studied the role of Rab3A and its relationship with Munc13-1 and Munc18-1 during vesicle priming. Phorbol 12-myristate 13-acetate (PMA) is known to enhance the percentage of fusion-competent vesicles and this is mediated by protein kinase C (PKC)-independent Munc13-1 activation and PKC-dependent dissociation of Munc18-1 from syntaxin 1a. Our results show that the effects of PMA varied in cells overexpressing Rab3A or mutants of Rab3A and in cells with Rab3A knockdown. When Munc13-1 was overexpressed in Rab3A knockdown cells, secretion was completely inhibited. In cells overexpressing a Rab-interacting molecule (RIM)-binding deficient Munc13-1 mutant, 128-Munc13-1, the effects of Rab3A on PMA-induced secretion was abolished. The effect of PMA, which disappeared in cells overexpressing GTP-Rab3A (Q81L), could be reversed by co-expressing Munc18-1 but not its mutant R39C, which is unable to bind to syntaxin 1a. In cells overexpressing Munc18-1, manipulation of Rab3A activity had no effect on secretion. Finally, Munc18-1 enhanced the dissociation of Rab3A, and such enhancement correlated with exocytosis. In summary, our results support the hypothesis that the Rab3A cycle is coupled with the activation of Munc13-1 via RIM, which accounts for the regulation of secretion by Rab3A. Munc18-1 acts downstream of Munc13-1/RIM/Rab3A and interacts with syntaxin 1a allowing vesicle priming. Furthermore, Munc18-1 promotes Rab3A dissociation from vesicles, which then results in fusion.  相似文献   

4.
Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes   总被引:3,自引:0,他引:3  
Guan R  Dai H  Rizo J 《Biochemistry》2008,47(6):1474-1481
The core of the membrane fusion machinery that governs neurotransmitter release includes the SNARE proteins syntaxin-1, SNAP-25 and synaptobrevin, which form a tight "SNARE complex", and Munc18-1, which binds to the SNARE complex and to syntaxin-1 folded into a closed conformation. Release is also controlled by specialized proteins such as complexins, which also bind to the SNARE complex, and unc13/Munc13s, which are crucial for synaptic vesicle priming and were proposed to open syntaxin-1, promoting SNARE complex assembly. However, the biochemical basis for unc13/Munc13 function and its relationship to other SNARE interactions are unclear. To address this question, we have analyzed interactions of the MUN domain of Munc13-1, which is key for this priming function, using solution binding assays and cofloatation experiments with SNARE-containing proteoliposomes. Our results indicate that the Munc13-1 MUN domain binds to membrane-anchored SNARE complexes, even though binding is barely detectable in solution. The MUN domain appears to compete with Munc18-1 but not with complexin-1 for SNARE complex binding, although more quantitative assays will be required to verify these conclusions. Moreover, our data also uncover interactions of membrane-anchored syntaxin-1/SNAP-25 heterodimers with the MUN domain, Munc18-1 and complexin-1. The interaction with complexin-1 is surprising, as it was not observed in previous solution studies. Our results emphasize the importance of studying interactions within the neurotransmitter release machinery in a native membrane environment, and suggest that unc13/Munc13s may provide a template to assemble syntaxin-1/SNAP-25 heterodimers, leading to an acceptor complex for synaptobrevin.  相似文献   

5.
Neuropeptide and peptide hormone secretion from neural and endocrine cells occurs by Ca(2+)-triggered dense-core vesicle exocytosis. The membrane fusion machinery consisting of vesicle and plasma membrane SNARE proteins needs to be assembled for Ca(2+)-triggered vesicle exocytosis. The related Munc13 and CAPS/UNC31 proteins that prime vesicle exocytosis are proposed to promote SNARE complex assembly. CAPS binds SNARE proteins and stimulates SNARE complex formation on liposomes, but the relevance of SNARE binding to CAPS function in cells had not been determined. Here we identify a core SNARE-binding domain in CAPS as corresponding to Munc13 homology domain-1 (MHD1). CAPS lacking a single helix in MHD1 was unable to bind SNARE proteins or to support the Ca(2+)-triggered exocytosis of either docked or newly arrived dense-core vesicles. The results show that MHD1 is a SNARE-binding domain and that SNARE protein binding is essential for CAPS function in dense-core vesicle exocytosis.  相似文献   

6.
C 2 domains are well characterized as Ca 2+/phospholipid-binding modules, but little is known about how they mediate protein–protein interactions. In neurons, a Munc13–1 C 2A-domain/RIM zinc-finger domain (ZF) heterodimer couples synaptic vesicle priming to presynaptic plasticity. We now show that the Munc13–1 C 2A domain homodimerizes, and that homodimerization competes with Munc13–1/RIM heterodimerization. X-ray diffraction studies guided by nuclear magnetic resonance (NMR) experiments reveal the crystal structures of the Munc13–1 C 2A-domain homodimer and the Munc13–1 C 2A-domain/RIM ZF heterodimer at 1.44 Å and 1.78 Å resolution, respectively. The C 2A domain adopts a β-sandwich structure with a four-stranded concave side that mediates homodimerization, leading to the formation of an eight-stranded β-barrel. In contrast, heterodimerization involves the bottom tip of the C 2A-domain β-sandwich and a C-terminal α-helical extension, which wrap around the RIM ZF domain. Our results describe the structural basis for a Munc13–1 homodimer–Munc13–1/RIM heterodimer switch that may be crucial for vesicle priming and presynaptic plasticity, uncovering at the same time an unexpected versatility of C 2 domains as protein–protein interaction modules, and illustrating the power of combining NMR spectroscopy and X-ray crystallography to study protein complexes.  相似文献   

7.
Kang L  He Z  Xu P  Fan J  Betz A  Brose N  Xu T 《Cell metabolism》2006,3(6):463-468
Munc13-1 is a presynaptic protein that is essential for synaptic vesicle priming. Deletion of Munc13-1/unc13 causes total arrest of synaptic transmission due to a complete loss of fusion-competent synaptic vesicles. The requirement of Munc13-1 for large dense-core vesicles (LDCVs), however, has not been established. In the present study, we use Munc13-1 knockout (KO) and diacylglycerol (DAG) binding-deficient Munc13-1H567K mutant knockin (KI) mice to determine the role of Munc13-1 in the secretion of insulin-containing LDCVs from primary cultured pancreatic β cells. We show that Munc13-1 is required for the sustained insulin release upon prolonged stimulation. The sustained release involves signaling of DAG second messenger, since it is also reduced in KI mice. Insulin secretion in response to glucose stimulation is characterized by a biphasic time course. Our data show that Munc13-1 plays an essential role in the development of the second phase of insulin secretion by priming insulin-containing LDCVs.  相似文献   

8.
Synaptic neurotransmitter release is restricted to active zones, where the processes of synaptic vesicle tethering, priming to fusion competence, and Ca2+-triggered fusion are taking place in a highly coordinated manner. We show that the active zone components Munc13-1, an essential vesicle priming protein, and RIM1, a Rab3 effector with a putative role in vesicle tethering, interact functionally. Disruption of this interaction causes a loss of fusion-competent synaptic vesicles, creating a phenocopy of Munc13-1-deficient neurons. RIM1 binding and vesicle priming are mediated by two distinct structural modules of Munc13-1. The Munc13-1/RIM1 interaction may create a functional link between synaptic vesicle tethering and priming, or it may regulate the priming reaction itself, thereby determining the number of fusion-competent vesicles.  相似文献   

9.
In chromaffin cells the number of large dense-core vesicles (LDCVs) which can be released by brief, intense stimuli represents only a small fraction of the 'morphologically docked' vesicles at the plasma membrane. Recently, it was shown that Munc13-1 is essential for a post-docking step of synaptic vesicle fusion. To investigate the role of Munc13-1 in LDCV exocytosis, we overexpressed Munc13-1 in chromaffin cells and stimulated secretion by flash photolysis of caged calcium. Both components of the exocytotic burst, which represent the fusion of release-competent vesicles, were increased by a factor of three. The sustained component, which represents vesicle maturation and subsequent fusion, was increased by the same factor. The response to a second flash, however, was greatly reduced, indicating a depletion of release-competent vesicles. Since there was no apparent change in the number of docked vesicles, we conclude that Munc13-1 acts as a priming factor by accelerating the rate constant of vesicle transfer from a pool of docked, but unprimed vesicles to a pool of release-competent, primed vesicles.  相似文献   

10.
Regulation of insulin exocytosis by Munc13-1   总被引:8,自引:0,他引:8  
The slower kinetics of insulin release from pancreatic islet beta cells, as compared with other regulated secretory processes such as chromaffin granule secretion, can in part be explained by the small number of the insulin granules that are docked to the plasma membrane and readily releasable. In type-2 diabetes, the kinetics of insulin secretion become grossly distorted, and, to therapeutically correct this, it is imperative to elucidate the mechanisms that regulate priming and secretion of insulin secretory granules. Munc13-1, a synaptic protein that regulates SNARE complex assembly, is the major protein determining the priming of synaptic vesicles. Here, we demonstrate the presence of Munc13-1 in human, rat, and mouse pancreatic islet beta cells. Expression of Munc13-1, along with its cognate partners, syntaxin 1a and Munc18a, is reduced in the pancreatic islets of type-2 diabetes non-obese Goto-Kakizaki and obese Zucker fa/fa rats. In insulinoma cells, overexpressed Munc13-1-enhanced green fluorescent protein is translocated to the plasma membrane in a temperature-dependent manner. This, in turn, greatly amplifies insulin exocytosis as determined by patch clamp capacitance measurements and radioimmunoassay of the insulin released. The potentiation of exocytosis by Munc13-1 is dependent on endogenously produced diacylglycerol acting on the overexpressed Munc13-1 because it is blocked by a phospholipase C inhibitor (U73122) and abrogated when the diacylglycerol binding-deficient Munc13-1H567K mutant is expressed instead of the wild type protein. Our data demonstrate that Munc13-mediated vesicle priming is not restricted to neurotransmitter release but is also functional in insulin secretion, where it is subject to regulation by the diacylglycerol second messenger pathway. In view of our findings, Munc13-1 is a potential drug target for therapeutic optimization of insulin secretion in diabetes.  相似文献   

11.
Recent biochemical and genetic studies have demonstrated that an essential step of the herpes simplex virus type 1 capsid assembly pathway involves the interaction of the major capsid protein (VP5) with either the C terminus of the scaffolding protein (VP22a, ICP35) or that of the protease (Pra, product of UL26). To better understand the nature of the interaction and to further map the sequence motif, we expressed the C-terminal 30-amino-acid peptide of ICP35 in Escherichia coli as a glutathione S-transferase fusion protein (GST/CT). Purified GST/CT fusion proteins were then incubated with 35S-labeled herpes simplex virus type 1-infected cell lysates containing VP5. The interaction between GST/CT and VP5 was determined by coprecipitation of the two proteins with glutathione Sepharose beads. Our results revealed that the GST/CT fusion protein specifically interacts with VP5, suggesting that the C-terminal domain alone is sufficient for interaction with VP5. Deletion analysis of the GST/CT binding domain mapped the interaction to a minimal 12-amino-acid motif. Substitution mutations further revealed that the replacement of hydrophobic residues with charged residues in the core region of the motif abolished the interaction, suggesting that the interaction is a hydrophobic one. A chaotropic detergent, 0.1% Nonidet P-40, also abolished the interaction, further supporting the hydrophobic nature of the interaction. Computer analysis predicted that the minimal binding motif could form a strong alpha-helix structure. Most interestingly, the alpha-helix model maximizes the hydropathicity of the minimal domain so that all of the hydrophobic residues are centered around a Phe residue on one side of the alpha-helix. Mutation analysis revealed that the Phe residue is absolutely critical for the binding, since changes to Ala, Tyr, or Trp abrogated the interaction. Finally, in a peptide competition experiment, the C-terminal 25-amino-acid peptide, as well as a minimal peptide derived from the binding motif, competed with GST/CT for interaction with VP5. In addition, a cyclic analog of the minimal peptide which is designed to stabilize an alpha-helical structure competed more efficiently than the minimal peptide. The evidence suggests that the C-terminal end of ICP35 forms an alpha-helical secondary structure, which may bind specifically to a hydrophobic pocket in VP5.  相似文献   

12.
Bone morphogenetic protein-1 (BMP-1) is a shorter spliced variant of mammalian tolloid (mTld), both of which cleave the C-propeptides of type I procollagen during the synthesis of extracellular matrix collagen fibrils. The fact that BMP-1 and mTld both exhibit procollagen C-proteinase (PCP) activity and that BMP-1 is the smaller variant might indicate that BMP-1 comprises the minimal required sequences for PCP activity. BMP-1 comprises a metalloproteinase domain, three CUB domains, and an epidermal growth factor (EGF)-like domain, which is located between the second and third CUB (complement components C1r/C1s, the sea urchin protein Uegf, and BMP-1) domains. In this study we showed the following. 1) The CUB1 domain is required for secretion of the molecule. Domain swapping experiments, in which CUB1 and other CUB domains were interchanged, resulted in retention of the proteins by cells. Therefore, CUB1 and its location immediately adjacent to the metalloproteinase domain are essential for secretion of the protein. 2) Mutants lacking the EGF-like and CUB3 domains exhibited full C-proteinase activity. In contrast, mutants lacking the CUB2 domain were poor C-proteinases. 3) Further studies showed that Glu-483 on the beta4-beta5 loop of CUB2 is essential for C-proteinase activity of BMP-1. In conclusion, the study showed that the minimal domain structure for PCP activity is considerably shorter than expected and comprises the metalloproteinase domain and the CUB1 and CUB2 domains of BMP-1.  相似文献   

13.
C Garmendia  J M Hermoso  M Salas 《Gene》1990,88(1):73-79
By site-directed mutagenesis we have changed into Cys the Ser232 of the phi 29 terminal protein (TP) involved in the covalent linkage to dAMP for the initiation of replication. The mutant TP, highly purified, had about 0.7% of the priming activity of the wild-type (wt) protein p3. The linkage between the mutant protein p3 and dAMP was more labile to piperidine treatment than the serine-dAMP linkage in the wt protein p3, suggesting the presence of a different kind of linkage, Cys-dAMP. In the other three mutant TPs, residues Leu220, Ser223 and Ser226 were independently changed into Pro; the purified TP mutants had about 3%, 140% and 1% of the priming activity of the wt p3, respectively. All the mutant TP were able to interact with the phi 29 DNA polymerase and with DNA, suggesting that Leu220 and Ser226, in addition to Ser232, form part of a functional domain involved in the process of initiation of DNA replication.  相似文献   

14.
Munc18-1 and soluble NSF attachment protein receptors (SNAREs) are critical for synaptic vesicle fusion. Munc18-1 binds to the SNARE syntaxin-1 folded into a closed conformation and to SNARE complexes containing open syntaxin-1. Understanding which steps in fusion depend on the latter interaction and whether Munc18-1 competes with other factors such as complexins for SNARE complex binding is critical to elucidate the mechanisms involved. In this study, we show that lentiviral expression of Munc18-1 rescues abrogation of release in Munc18-1 knockout mice. We describe point mutations in Munc18-1 that preserve tight binding to closed syntaxin-1 but markedly disrupt Munc18-1 binding to SNARE complexes containing open syntaxin-1. Lentiviral rescue experiments reveal that such disruption selectively impairs synaptic vesicle priming but not Ca2+-triggered fusion of primed vesicles. We also find that Munc18-1 and complexin-1 bind simultaneously to SNARE complexes. These results suggest that Munc18-1 binding to SNARE complexes mediates synaptic vesicle priming and that the resulting primed state involves a Munc18-1–SNARE–complexin macromolecular assembly that is poised for Ca2+ triggering of fusion.  相似文献   

15.
Rosenmund C  Sigler A  Augustin I  Reim K  Brose N  Rhee JS 《Neuron》2002,33(3):411-424
Presynaptic short-term plasticity is an important adaptive mechanism regulating synaptic transmitter release at varying action potential frequencies. However, the underlying molecular mechanisms are unknown. We examined genetically defined and functionally unique axonal subpopulations of synapses in excitatory hippocampal neurons that utilize either Munc13-1 or Munc13-2 as synaptic vesicle priming factor. In contrast to Munc13-1-dependent synapses, Munc13-2-driven synapses show pronounced and transient augmentation of synaptic amplitudes following high-frequency stimulation. This augmentation is caused by a Ca(2+)-dependent increase in release probability and releasable vesicle pool size, and requires phospholipase C activity. Thus, differential expression of Munc13 isoforms at individual synapses represents a general mechanism that controls short-term plasticity and contributes to the heterogeneity of synaptic information coding.  相似文献   

16.
Deng L  Kaeser PS  Xu W  Südhof TC 《Neuron》2011,69(2):317-331
At a synapse, the presynaptic active zone mediates synaptic vesicle exocytosis. RIM proteins are active zone scaffolding molecules that--among others--mediate vesicle priming and directly or indirectly interact with most other essential presynaptic proteins. In particular, the Zn2+ finger domain of RIMs binds to the C?A domain of the priming factor Munc13, which forms a homodimer in the absence of RIM but a heterodimer with it. Here, we show that RIMs mediate vesicle priming not by coupling Munc13 to other active zone proteins as thought but by directly activating Munc13. Specifically, we found that the isolated Zn2+ finger domain of RIMs autonomously promoted vesicle priming by binding to Munc13, thereby relieving Munc13 homodimerization. Strikingly, constitutively monomeric mutants of Munc13 rescued priming in RIM-deficient synapses, whereas wild-type Munc13 did not. Both mutant and wild-type Munc13, however, rescued priming in Munc13-deficient synapses. Thus, homodimerization of Munc13 inhibits its priming function, and RIMs activate priming by disrupting Munc13 homodimerization.  相似文献   

17.
18.
《Neuron》2021,109(24):3980-4000.e7
  1. Download : Download high-res image (159KB)
  2. Download : Download full-size image
  相似文献   

19.
Munc13-1 is an essential component of synaptic vesicle releasing machinery. Three rat Munc 13-1 constructs were rationally designed based on homology and function, overexpressed in Escherichia coli, and purified to homogeneity with a final yield higher than 2 ~tg/ml of cell culture. The purified Munc 13-1 recombinant proteins had distinct oligomeric states, monodispersity and homogeneity properties. Their secondary structural contents were analyzed by the circular dichroism method, and the sedimentation coefficients of these recombinant proteins were measured by analytical ultracentrifugation. The long helical bundle-like topology of Munc 13-1 was first revealed by analysis of our data. In addition, these purified recombinant proteins provide ideal starting materials for further biochemical, biophysical, and structural studies on mammalian Munc 13 proteins.  相似文献   

20.
LPS is an efficient sensitizer of the neutrophil exocytic response to a second stimulus. Although neutrophil exocytosis in response to pathogen-derived molecules plays an important role in the innate immune response to infections, the molecular mechanism underlying LPS-dependent regulation of neutrophil exocytosis is currently unknown. The small GTPase Rab27a and its effector Munc13-4 regulate exocytosis in hematopoietic cells. Whether Rab27a and Munc13-4 modulate discrete steps or the same steps during exocytosis also remains unknown. Here, using Munc13-4- and Rab27a-deficient neutrophils, we analyzed the mechanism of lipopolysaccharide-dependent vesicular priming to amplify exocytosis of azurophilic granules. We found that both Munc13-4 and Rab27a are necessary to mediate LPS-dependent priming of exocytosis. However, we show that LPS-induced mobilization of a small population of readily releasable vesicles is a Munc13-4-dependent but Rab27a-independent process. LPS-induced priming regulation could not be fully explained by secretory organelle maturation as the redistribution of the secretory proteins Rab27a or Munc13-4 in response to LPS treatment was minimal. Using total internal reflection fluorescence microscopy and a novel mouse model expressing EGFP-Rab27a under the endogenous Rab27a promoter but lacking Munc13-4, we demonstrate that Munc13-4 is essential for the mechanism of LPS-dependent exocytosis in neutrophils and unraveled a novel mechanism of vesicular dynamics in which Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号