首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the repair kinetics of DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) in unstimulated normal human peripheral blood lymphocytes (HPBL). SSBs and DSBs induced by gamma-irradiation (at 0 degree C) were assayed without radiolabel by alkaline and neutral filter elution, respectively. Incubation of irradiated cells at 37 degrees C for various lengths of time demonstrated that the percent DNA rejoined increased until it reached a plateau at approximately 60 min; this repair plateau underwent no substantial change when incubation continued for 20-24 h. The level of the plateau indicated how closely the elution profile of DNA from cells irradiated and incubated (experimental) resembled the elution profile of DNA from unirradiated cells (control). After 6 Gy and 60 min incubation, the alkaline elution profile of DNA from experimental cells from 5 donors was indistinguishable from that seen in DNA from control cells, suggesting that rejoining of SSBs was complete. In contrast after 100 Gy and 60 min incubation the neutral elution profile of DNA from cells from the same donors demonstrated that, compared to DNA from control cells, rejoining of DSBs was approximately two-thirds complete. In the range of 2-8 Gy, 85-104% of SSBs were rejoined after 60 min incubation; in the range of 30-120 Gy, 46-80% of DSBs were rejoined after 60 min incubation. These unexpected results stand in contrast to our previous studies with confluent normal human diploid fibroblasts (HDF), in which rejoining of both SSBs and DSBs was greater than 90% complete by 60 min repair incubation and 100% complete after 18-24 h.  相似文献   

2.
Induction and rejoining of DNA double-strand breaks in bladder tumor cells   总被引:8,自引:0,他引:8  
The induction and rejoining of radiation-induced double-strand breaks (DSBs) in cells of six bladder tumor cell lines (T24, UM-UC-3, TCC-SUP, RT112, J82, HT1376) were measured using the neutral comet assay. Radiation dose-response curves (0-60 Gy) showed damage (measured as mean tail moment) for five of the cell lines in the same rank order as cell survival (measured over 0-10 Gy), with the least damage in the most radioresistant cell line. Damage induction correlated well with clonogenic survival at high doses (SF10) for all six cell lines. At the clinically relevant dose of 2 Gy, correlation was good for four cell lines but poor for two (TCC-SUP and T24). The rejoining process had a fast and slow component for all cell lines. The rate of these two components of DNA repair did not correlate with cell survival. However, the time taken to reduce the amount of DNA damage to preirradiated control levels correlated positively with cell survival at 10 Gy but not 2 Gy; radioresistant cells rejoined the induced DSBs to preirradiation control levels more quickly than the radiosensitive cells. Although the results show good correlation between SF10 and DSBs for all six cell lines, the lack of correlation with SF2 for TCC-SUP and T24 cells would suggest that a predictive test should be carried out at the clinically relevant dose. At present the neutral comet assay cannot achieve this.  相似文献   

3.
Unstimulated human peripheral blood lymphocytes (HPBL), separated by density centrifugation from anticoagulated whole blood, were X-irradiated (30 Gy) on ice and incubated in medium at 37 degrees C for repair times of 15, 30, and 120 min. Blood donors were 18 normotensive, non-smoking Caucasians aged 23-78, free from overt pathology and not taking any medications. Neutral filter elution was used to assay DNA double-strand break (DSB) induction and completeness of DSB rejoining (plus rejoining of any X-ray-induced alkali-labile sites converted to DSBs in vitro at pH 9.6). After 30 or 120 min repair incubation, the percentage of DSBs rejoined by cells from older donors (aged 66-78 years) was less than half the percentage of DSBs rejoined by cells from younger donors (aged 23-39 and 42-57). When data from the 3 age groups were pooled, the age-related decline in percent DSBs rejoined was significant for repair times 30 min (r = -0.63, p less than 0.005) and 120 min (r = -0.64, p less than 0.005) but not for 15 min (r = -0.04). These age-related declines were observed even though DNA from older donors sustained fewer strand breaks as demonstrated by the negative correlation between donor age and DSB induction (r = -0.65, p less than 0.005). These results suggest that the efficacy of X-ray-induced DSB repair diminishes with in vivo age in unstimulated HPBL.  相似文献   

4.
DNA damage generated by high-energy and high-Z (HZE) particles is more skewed toward multiply damaged sites or clustered DNA damage than damage induced by low-linear energy transfer (LET) X and gamma rays. Clustered DNA damage includes abasic sites, base damages and single- (SSBs) and double-strand breaks (DSBs). This complex DNA damage is difficult to repair and may require coordinated recruitment of multiple DNA repair factors. As a consequence of the production of irreparable clustered lesions, a greater biological effectiveness is observed for HZE-particle radiation than for low-LET radiation. To understand how the inability of cells to rejoin DSBs contributes to the greater biological effectiveness of HZE particles, the kinetics of DSB rejoining and cell survival after exposure of normal human skin fibroblasts to a spectrum of HZE particles was examined. Using gamma-H2AX as a surrogate marker for DSB formation and rejoining, the ability of cells to rejoin DSBs was found to decrease with increasing Z; specifically, iron-ion-induced DSBs were repaired at a rate similar to those induced by silicon ions, oxygen ions and gamma radiation, but a larger fraction of iron-ion-induced damage was irreparable. Furthermore, both DNA-PKcs (DSB repair factor) and 53BP1 (DSB sensing protein) co-localized with gamma-H2AX along the track of dense ionization produced by iron and silicon ions and their focus dissolution kinetics was similar to that of gamma-H2AX. Spatial co-localization analysis showed that unlike gamma-H2AX and 53BP1, phosphorylated DNA-PKcs was localized only at very specific regions, presumably representing the sites of DSBs within the tracks. Examination of cell survival by clonogenic assay indicated that cell killing was greater for iron ions than for silicon and oxygen ions and gamma rays. Collectively, these data demonstrate that the inability of cells to rejoin DSBs within clustered DNA lesions likely contributes to the greater biological effectiveness of HZE particles.  相似文献   

5.
The influence of higher-order chromatin structure on the non-random distribution of DNA double-strand breaks induced by high-LET radiation was investigated. Five different chromatin structures (intact cells, condensed and decondensed chromatin, nucleoids and naked genomic DNA) from GM5758 cells or K562 cells were irradiated with (137)Cs gamma-ray photons and 125 keV/microm nitrogen ions (16-25 MeV/nucleon). DNA was purified with a modified lysis procedure to avoid release of heat-labile sites, and fragment size distributions and double-strand break yields were analyzed by different pulsed-field gel electrophoresis protocols. Whereas double-strand breaks in photon-irradiated cells were randomly distributed, irradiation of intact K562 cells with high-LET nitrogen ions produced an excess of non-randomly distributed DNA fragments 10 kb-1 Mbp in size. Complete removal of proteins eliminated this non-random component. There was a gradual increase in the yield of double-strand breaks for each chromatin decondensation step, and compared to intact cells, the yields for naked DNA (in buffer without scavengers) increased 83 and 25 times after photon and nitrogen-ion irradiation, respectively. The corresponding relative biological effectiveness decreased from 1.6-1.8 for intact cells to 0.49 for the naked DNA. We conclude that the organization of DNA into chromatin fiber and higher-order structures is responsible for the majority of non-randomly distributed double-strand breaks induced by high-LET radiation. However, our data suggest a complex interaction between track structure and chromatin organization over several levels.  相似文献   

6.
Five recently established cell lines of human carcinoma of the cervix of varying radiosensitivity have been used to determine whether the induction or rejoining of DNA double-strand breaks (dsb) shows any correlation with radiosensitivity or radiation recovery capacity. Double-strand DNA breaks have been measured using neutral filter elution at pH 9.6. The number of breaks induced immediately after irradiation with doses of 10 to 40 Gy 60Co gamma rays appeared to show some correlation with radiosensitivity particularly after 10 Gy; the two more radiosensitive lines incurred more breaks than the more radioresistant lines. In addition, the shape of the induction curve with dose was linear for the two sensitive lines but curvilinear for the resistant lines. Despite the dose scales being different, this mirrored their respective cell survival curve shapes. After 30 or 50 Gy irradiation, rejoining of breaks appeared to be rapid and almost complete within 60 min at 37 degrees C for the three resistant lines. However, for the sensitive lines, one line (HX160c) in particular exhibited a reduced rate of dsb rejoining. In addition, a residual level of dsb was present in this line even after allowing rejoining for 3 h. While induction and rejoining of DNA dsb therefore appears to be a factor in determining radiosensitivity, at doses relevant to cellular survival (up to 10 Gy), the greater induction of DNA dsb in radiosensitive lines may play a significant role in determining the cellular response to ionizing radiation.  相似文献   

7.
The levels of apparent DNA single-strand breaks (ssb) were measured, following a 0-20 h incubation of normal human skin fibroblasts exposed to the solar uv wavelengths produced by a fluorescent sunlamp. The ssb were determined using the alkaline elution assay, which was performed either without proteinase K (proK) or in its presence, so as to eliminate any DNA-protein crosslinks that may be present in the cells. Cells were irradiated with either 3 kJ/m2 of sunlamp uv greater than 295 nm, 150 kJ/m2 of sunlamp uv greater than 315 nm, or 150 kJ/m2 of sunlamp uv greater than 320 nm. These treatments resulted in the production of 5-10 ssb/10(10) Da. For the two shorter wavelength irradiations, the levels of ssb decreased rapidly upon incubation of the cells. However, when the elutions were performed using proK, the number of ssb increased about twofold following a 2-4 h incubation. In contrast, the levels of ssb decreased in the sunlamp uv greater than 320 nm irradiated cells for elutions performed with or without proK. These results suggest that under certain irradiation conditions, ssb are formed in cells upon incubation, which are hidden by the crosslinking of protein to DNA.  相似文献   

8.
9.
It was studied for human skin fibroblasts, whether the induction or repair of DNA double-strand breaks (dsb) depend on the differentiation status. These studies were performed (a) with a fibroblast strain (HSF1) kept in progenitor state (mitotic fibroblasts, MF) or triggered to premature terminal differentiation (postmitotic fibrocytes, PMF) by exposure to mitomycin C or (b) with 20 fibroblast strains differing intrinsically in their differentiation status. The differentiation status was quantified by determining the fraction of postmitotic fibrocytes by light microscopy. DNA dsb were measured by constant-field gel electrophoresis, and the fraction of apoptotic cells by comet assay. MF and PMF cultures of HSF1 cells were irradiated with X-ray doses up to 160 Gy, and dsb were measured either immediately after irradiation or after a repair incubation of 4 or 24 h. There were a difference neither in the number of initial nor residual dsb. PMF cultures, however, showed a slightly higher number of dsb already present in non-irradiated cells, which was measured to result from a small fraction of 5% apoptotic cells. The 20 analysed fibroblast strains showed a substantial variation in the fraction of postmitotic fibrocytes (9-51%) as well as in the number of dsb remaining at 24 h after irradiation (1.9-4.9%), but there was no correlation between these two parameters. These data demonstrate that for fibroblasts the terminal differentiation has an effect neither on the induction nor the repair of radiation-induced dsb. This result indicates that the variation in dsb-repair capacity previously observed for fibroblast strains and which was considered to be the main cause for the variation in the cellular radiosensitivity, cannot be ascribed to differences in the differentiation status.  相似文献   

10.
High-linear energy transfer ionizing radiation, derived from high charge (Z) and energy (E) (HZE) particles, induces clustered/complex DNA double-strand breaks (DSBs) that include small DNA fragments, which are not repaired by the non-homologous end-joining (NHEJ) pathway. The homologous recombination (HR) DNA repair pathway plays a major role in repairing DSBs induced by HZE particles. The Mre11 complex (Mre11/Rad50/NBS1)-mediated resection of DSB ends is a required step in preparing for DSB repair via the HR DNA repair pathway. Here we found that expression of Bcl2 results in decreased HR activity and retards the repair of DSBs induced by HZE particles (i.e. 56iron and 28silicon) by inhibiting Mre11 complex activity. Exposure of cells to 56iron or 28silicon promotes Bcl2 to interact with Mre11 via the BH1 and BH4 domains. Purified Bcl2 protein directly suppresses Mre11 complex-mediated DNA resection in vitro. Expression of Bcl2 reduces the ability of Mre11 to bind DNA following exposure of cells to HZE particles. Our findings suggest that, after cellular exposure to HZE particles, Bcl2 may inhibit Mre11 complex-mediated DNA resection leading to suppression of the HR-mediated DSB repair in surviving cells, which may potentially contribute to tumor development.  相似文献   

11.
DNA double-strand breaks (DSB) are generally considered the most critical lesion induced by ionizing radiation (IR) and may initiate carcinogenesis and other disease. Using an immunofluorescence assay to simultaneously detect nuclear foci of the phosphorylated forms of histone H2AX and ATM kinase at sites of DSBs, we examined the response of 25 apparently normal and 10 DNA repair-deficient (ATM, ATR, NBN, LIG1, LIG4, and FANCG) primary fibroblast strains irradiated with low doses of 137Cs γ-rays. Quiescent G0/G1-phase cultures were exposed to 5, 10, and 25 cGy and allowed to repair for 24 h. The maximum level of IR-induced foci (0.15 foci per cGy, at 10 or 30 min) in the normal strains showed much less inter-individual variation (CV  0.2) than the level of spontaneous foci, which ranged from 0.2–2.6 foci/cell (CV  0.6; mean ± SD of 1.00 ± 0.57). Significantly slower focus formation post-irradiation was observed in seven normal strains, similar to most mutant strains examined. There was variation in repair efficiency measured by the fraction of IR-induced foci remaining 24 h post-irradiation, curiously with the strains having slower focus formation showing more efficient repair after 25 cGy. Interestingly, the ranges of spontaneous and residual induced foci levels at 24 h in the normal strains were as least as large as those observed for the repair-defective mutant strains. The inter-individual variation in DSB foci parameters observed in cells exposed to low doses of ionizing radiation in this small survey of apparently normal people suggests that hypomorphic genetic variants in genomic maintenance and/or DNA damage signaling and repair genes may contribute to differential susceptibility to cancer induced by environmental mutagens.  相似文献   

12.
Results of epidemiological research show low association of electromagnetic field (EMF) with increased risk of cancerous diseases and missing dose-effect relations. An important component in assessing potential cancer risk is knowledge concerning any genotoxic effects of extremely-low-frequency-EMF (ELF-EMF).Human diploid fibroblasts were exposed to continuous or intermittent ELF-EMF (50Hz, sinusoidal, 24h, 1000microT). For evaluation of genotoxic effects in form of DNA single- (SSB) and double-strand breaks (DSB), the alkaline and the neutral comet assay were used.In contrast to continuous ELF-EMF exposure, the application of intermittent fields reproducibly resulted in a significant increase of DNA strand break levels, mainly DSBs, as compared to non-exposed controls. The conditions of intermittence showed an impact on the induction of DNA strand breaks, producing the highest levels at 5min field-on/10min field-off. We also found individual differences in response to ELF-EMF as well as an evident exposure-response relationship between magnetic flux density and DNA migration in the comet assay.Our data strongly indicate a genotoxic potential of intermittent EMF. This points to the need of further studies in vivo and consideration about environmental threshold values for ELF exposure.  相似文献   

13.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

14.
The repair of DNA double-strand breaks (DSBs) is facilitated by the phosphorylation of H2AX, which organizes DNA damage signaling and chromatin remodeling complexes in the vicinity of the lesion. The disruption of DNA integrity induces an alteration of chromatin architecture that has been proposed to activate the DNA damage transducing kinase ataxia telangiectasia mutated. However, little is known about the physical properties of damaged chromatin. In this study, we use a photoactivatable version of GFP-tagged histone H2B to examine the mobility and structure of chromatin containing DSBs in living cells. We find that chromatin containing DSBs exhibits limited mobility but undergoes an energy-dependent local expansion immediately after DNA damage. The localized expansion observed in real time corresponds to a 30-40% reduction in the density of chromatin fibers in the vicinity of DSBs, as measured by energy-filtering transmission electron microscopy. The observed opening of chromatin occurs independently of H2AX and ATM. We propose that localized adenosine triphosphate-dependent decondensation of chromatin at DSBs establishes an accessible subnuclear environment that facilitates DNA damage signaling and repair.  相似文献   

15.
The induction and rejoining of gamma-ray-induced DNA strand breaks were measured in a Chinese hamster ovary cell line, AA8, and in two radiosensitive clones (EM9 and NM2) derived from it. The kinetics of recovery from sublethal damage (SLD) and potentially lethal damage (PLD) has previously been characterized in each of these lines [vanAnkeren et al., Radiat. Res., 115, 223-237 (1988)]. No significant differences were observed among the cell lines in the yields of either DNA single-strand breaks (SSBs) or double-strand breaks (DSBs) as assayed by filter elution. Data for SSB rejoining in AA8 and NM2 cells irradiated with 7.5 Gy were fit by a biexponential process (t1/2 values of approximately 4 and 80 min). In comparison, SSB rejoining in EM9 cells was initially slower (t1/2 = 10 min) and a higher level of SSBs was unrejoined 6 h after irradiation. DSB rejoining in AA8 cells assayed at pH 9.6 was also biphasic (t1/2 values of 15 and 93 min), although when assayed at pH 7.0, most (approximately 80%) of the damage was rejoined at a constant rate (t1/2 = 45 min) during the first 2 h. EM9 cells exhibited a slower initial rate of DSB rejoining when assayed at pH 9.6 but showed no difference compared with AA8 cells in DSB rejoining when assayed at pH 7.0. These results indicate that radiosensitive EM9 cells, whose kinetics of recovery from SLD and PLD was the same as that of AA8 cells, have a defect in the fast phase of SSB rejoining but no measurable defect in DSB rejoining. Conversely, NM2 cells, which displayed a reduced shoulder width on their survival curve and decreased recovery from SLD, had no demonstrable defects in the rate or extent of rejoining of DSBs or SSBs. When compared with the SLD and PLD data reported previously, these results suggest that there is no direct correlation between either of these recovery processes and the rejoining of SSBs or DSBs as assayed here.  相似文献   

16.
Misrejoining of DNA double-strand breaks (DSBs) was measured in human primary fibroblasts after exposure to X rays and high-LET particles (helium, nitrogen and iron) in the dose range 10-80 Gy. To measure joining of wrong DNA ends, the integrity of a 3.2-Mbp restriction fragment was analyzed directly after exposure and after 16 h of repair incubation. It was found that the misrejoining frequency for X rays was nonlinearly related to dose, with less probability of misrejoining at low doses than at high doses. The dose dependence for the high-LET particles, on the other hand, was closer to being linear, with misrejoining frequencies higher than for X rays, particularly at the lower doses. These experimental results were simulated with a Monte Carlo approach that includes a cell nucleus model with all 46 chromosomes present, combined with realistic track structure simulations to calculate the geometrical positions of all DSBs induced for each dose. The model assumes that the main determinant for misrejoining probability is the distance between two simultaneously present DSBs. With a Gaussian interaction probability function with distance, it was found that the data for both low- and high-LET radiation could be fitted with an interaction distance (sigma of the Gaussian curve) of 0.25 microm. This is half the distance previously found to best fit chromosomal aberration data in human lymphocytes using the same methods (Holley et al., Radiat. Res. 158, 568-580, 2002). The discrepancy may indicate inadequacies in the chromosome model, for example insufficient chromosomal overlap, but may also be partly due to differences between fibroblasts and lymphocytes.  相似文献   

17.
Using the alkaline filter elution technique we monitored the induction and disappearance of DNA single-strand breaks (SSB) in 3 different human lymphocyte populations: (1) freshly isolated peripheral blood lymphocytes (PBL); (2) B and T cell-enriched lymphocyte fractions; and (3) actively proliferating T cells, after exposure to ethylnitrosourea (ENU). Between these different lymphocyte populations no significant differences were observed in the number of SSB induced by a 20-min treatment with 0.5 mM ENU. SSB disappearance was observed in PBL of some but not all individuals, confirming our earlier results (Boerrigter et al., 1990a). Determinations on B and T cell-enriched lymphocyte populations indicated that ENU-induced SSB were removed only in T lymphocytes; no significant amount of SSB disappearance was observed in B lymphocytes. In contrast, no differences in SSB repair between B and T lymphocytes were found after gamma-irradiation. Induction and disappearance of ENU-induced SSB were found not to be dependent on the proliferative status of T lymphocytes; no differences were observed between quiescent PBL or T lymphocytes and actively proliferating T cells from the same donor, with respect to either the rate or the total amount of ENU-induced SSB disappearance.  相似文献   

18.
Yields of DNA double-strand breaks were determined in primary human skin fibroblasts exposed to 1H and 4He ions at various linear energy transfers (LETs) and to 15 MeV electrons as the reference radiation. The values obtained for the relative biological effectiveness (RBE) were 2.03, 1.45 and 1.36 for 1H ions at LETs of 35, 23 and 7.9 keV/microm, respectively, and 1.2, 1.18, 1.38 and 1.31 for 4He ions at LETs of 124, 76, 35 and 27 keV/microm, respectively. The data were obtained using pulsed-field gel electrophoresis of DNA released from cells using the chromosomes of the yeast Saccharomyces cerevisiae as length markers and fitting the experimental mass distributions of fragmented DNA to those obtained by computer simulation of the random breakage of human chromosomes. The RBE values for induction of DSBs in mammalian cells cannot be fitted to a common RBE-LET relationship for electrons and 1H, 4He and light ions. Comparison of the RBEs for mammalian cells with the corresponding RBEs obtained for yeast cells shows similar RBEs of electrons for yeast and mammalian cells; however, for 4He and light ions in the LET range of 100 to 1000 keV/microm, the RBEs for yeast are significantly higher compared with mammalian cells. These characteristics of the RBE-LET relationships for yeast and mammalian cells are attributed to the fraction of small DNA fragments induced by particles when traversing the higher-order chromatin structures which are different to some extent in these two cell types.  相似文献   

19.
Using plateau-phase cultures of AG1522 normal human fibroblasts, we examined relationships between the breakage and rejoining of chromosomes and the induction and repair of sublethal damage (SLD) following fractionated doses of X rays. The rate constant for the rejoining of breaks in prematurely condensed interphase chromosomes, measured previously, accurately predicts both the rate of change in survival due to potentially lethal damage (PLD) repair and the rate of change in survival for dose fractionation due to SLD repair. Further, changes in the frequency of chromosome-type deletions and asymmetrical exchange aberrations measured in the first postirradiation mitosis corresponded closely with changes in cell killing when doses were fractionated, and a dose-fractionation- or dose-rate-independent alpha component of damage was similar for aberration and cell killing end points. These results substantiate the hypothesis that sublethal damage repair results from the rejoining of breaks in interphase chromatin produced by a first dose so they no longer are capable of interacting with those produced by a second dose. The fact that the repair of potentially lethal damage is also readily explained on the basis of chromosome break rejoining (M. N. Cornforth and J. S. Bedford, Radiat. Res. 111, 385-405 (1987)) strongly suggests that PLD and SLD repair are different manifestations of the same basic process operating on the same basic lesions.  相似文献   

20.
This study aimed to test the potential of the radiomimetic chemical zeocin to induce DNA double-strand breaks (DSB) and “adaptive response” (AR) in Chlamydomonas reinhardtii strain CW15 as a model system. The AR was measured as cell survival using a micro-colony assay, and by changes in rejoining of DSB DNA. The level of induced DSB was measured by constant field gel electrophoresis based on incorporation of cells into agarose blocks before cell lysis. This avoids the risk of accidental induction of DSB during the manipulation procedures. Our results showed that zeocin could induce DSB in C. reinhardtii strain CW15 in a linear dose-response fashion up to 100 μg ml−1 which marked the beginning of a plateau. The level of DSB induced by 100 μg ml−1 zeocin was similar to that induced by 250 Gy of gamma-ray irradiation. It was also found that, similar to gamma rays, zeocin could induce AR measured as DSB in C. reinhardtii CW15 and this AR involved acceleration of the rate of DSB rejoining, too. To our knowledge, this is the first demonstration that zeocin could induce AR in some low eukaryotes such as C. reinhardtii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号