首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Banks DD  Gloss LM 《Biochemistry》2003,42(22):6827-6839
To compare the stability of structurally related dimers and to aid in understanding the thermodynamics of nucleosome assembly, the equilibrium stabilities of the recombinant wild-type H3-H4 tetramer and H2A-H2B dimer have been determined by guanidinium-induced denaturation, using fluorescence and circular dichroism spectroscopies. The unfolding of the tetramer and dimer are highly reversible. The unfolding of the H2A-H2B dimer is a two-state process, with no detected equilibrium intermediates. The H3-H4 tetramer is unstable at moderate ionic strengths (mu approximately 0.2 M). TMAO (trimethylamine-N-oxide) was used to stabilize the tetramer; the stability of the H2A-H2B dimer was determined under the same solvent conditions. The equilibrium unfolding of H3-H4 was best described by a three-state mechanism, with well-folded H3-H4 dimers as a populated intermediate. When compared to H2A-H2B, the H3-H3 tetramer interface and the H3-H4 histone fold are strikingly less stable. The free energy of unfolding, in the absence of denaturant, for the H3-H4 and H2A-H2B dimers are 12.4 and 21.0 kcal mol(-)(1), respectively, in 1 M TMAO. It is postulated that the difference in stability between the histone dimers, which contain the same fold, is the result of unfavorable tertiary interactions, most likely the partial to complete burial of three salt bridges and burial of a charged hydrogen bond. Given the conservation of these buried interactions in histones from yeast to mammals, it is speculated that the H3-H4 tetramer has evolved to be unstable, and this instability may relate to its role in nucleosome dynamics.  相似文献   

2.
3.
We have investigated the role of the labile terminal domains of the core histones on the stability of the subunits of the protein core of the nucleosome by studying the thermodynamic behavior of the products of limited trypsin digestion of these subunits. The thermal stabilities of the truncated H2A-H2B dimer and the truncated (H3-H4)/(H3-H4)(2) system were studied by high-sensitivity differential scanning calorimetry and circular dichroism spectroscopy. The thermal denaturation of the truncated H2A-H2B dimer at pH 6.0 and low ionic strength is centered at 47.3 degrees C. The corresponding enthalpy change is 35 kcal/mol of 11.5 kDa monomer unit, and the heat capacity change upon unfolding is 1.2 kcal/(K mol of 11.5 kDa monomer unit). At pH 4.5 and low ionic strength, the truncated (H3-H4)/(H3-H4)(2) system, like its full-length counterpart, is quantitatively dissociated into two truncated H3-H4 dimers. The thermal denaturation of the truncated H3-H4 dimer is characterized by the presence of a single calorimetric peak centered at 60 degrees C. The enthalpy change is 25 kcal/mol of 10 kDa monomer unit, and the change in heat capacity upon unfolding is 0.5 kcal/(K mol of 10 kDa monomer unit). The thermal stabilities of both types of truncated dimers exhibit salt and pH dependencies similar to those of the full-length proteins. Finally, like their full-length counterparts, both truncated core histone dimers undergo thermal denaturation as highly cooperative units, without the involvement of any significant population of melting intermediates. Therefore, removal of the histone "tails" does not generally affect the thermodynamic behavior of the subunits of the core histone complex, indicating that the more centrally located regions of the histone fold and the extra-fold structured elements are primarily responsible for their stability and responses to parameters of their chemical microenvironment.  相似文献   

4.
Placek BJ  Gloss LM 《Biochemistry》2002,41(50):14960-14968
The histone proteins of the core nucleosome are highly basic and form heterodimers in a "handshake motif." The N-terminal tails of the histones extend beyond the canonical histone fold of the hand-shake motif and are the sites of posttranslational modifications, including lysine acetylations and serine phosphorylations, which influence chromatin structure and activity as well as alter the charge state of the tails. However, it is not well understood if these modifications are signals for recruitment of other cellular factors or if the removal of net positive charge from the N-terminal tail plays a role in the overall structure of chromatin. To elucidate the effects of the N-terminal tails on the structure and stability of histones, the highly charged N-terminal tails were truncated from the H2A and H2B histones. Three mutant dimers were studied: DeltaN-H2A/WT H2B; WT H2A/DeltaN-H2B, and DeltaN-H2A/DeltaN-H2B. The CD spectra, stabilities to urea-denaturation, and the salt-dependent stabilization of the three truncated dimers were compared with those of the wild-type dimer. The data support four conclusions regarding the effects of the N-terminal tails of H2A and H2B: (1) Removal of the N-terminal tails of H2A and H2B enhance the helical structure of the mutant heterodimers. (2) Relative to the full-length WT heterodimer, the DeltaN-H2A/WT H2B dimer is destabilized, while the WT H2A/DeltaN-H2B and DeltaN-H2A/DeltaN-H2B dimers are slightly stabilized. (3) The truncated dimers exhibit decreased m values, relative to the WT dimer, supporting the hypothesis that the N-terminal tails in the isolated dimer adopt a collapsed structure. (4) Electrostatic repulsion in the N-terminal tails decreases the stability of the H2A-H2B dimer.  相似文献   

5.
6.
T Fernando  C A Royer 《Biochemistry》1992,31(29):6683-6691
The unfolding properties of the trp repressor of Escherichia coli have been studied using a number of different time-resolved and steady-state fluorescence approaches. Denaturation by urea was monitored by the average fluorescence emission energy of the intrinsic tryptophan residues of the repressor. These data were consistent with a two-state transition from dimer to unfolded monomer with a free energy of unfolding of 19.2 kcal/mol. The frequency response profiles of the fluorescence emission brought to light subtle urea-induced modifications of the intrinsic tryptophan decay parameters both preceding and following the main unfolding transition. The increase of lifetime induced by urea required higher concentrations of urea than the increase in the total intensity described by Gittelman and Matthews [(1990) Biochemistry 29, 7011]. This indicates that the intensity increase has both dynamic and static origins. To assess the effect of tryptophan binding upon repressor stability, and to determine whether repressor oligomerization would be detectable in an unfolding experiment, we examined denaturation profiles of repressor labeled with the long-lived fluorescence probe 5-(dimethylamino)naphthalene-1-sulfonyl (DNS), by monitoring the average rotational correlation time of the probe. These experiments revealed a protein concentration dependent transition at low urea concentrations. This transition was promoted by tryptophan binding. We ascribe this transition to urea-induced dissociation of repressor tetramers. The main unfolding transition of the dimer to unfolded monomer was also observable using this technique, and the free energies associated with this transition were 18.3 kcal/mol in the absence of tryptophan and 24.1 kcal/mol in its presence, demonstrating that co-repressor binding stabilizes the repressor dimer against denaturation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Dynamic equilibrium analysis of the (H2A-H2B-H3-H4)2 histone octamer with lower oligomers was performed in 2 M NaCl. Calculated data on the relative content of histone oligomers upon changing protein concentration in solution are given. The red shift of lambda max for histone tyrosine fluorescence spectra is shown to be due to hydrogen bond formation by tyrosyl OH-groups. Analysis of free energy changes of histone oligomers upon association (delta G = -17,37 +/- 0,14 kcal/mole) as well as the effect of urea on histone octamer dissociation made it possible to conclude that virtually all tyrosyls in octamer form hydrogen bonds. Intermolecular hydrogen bonds formed by tyrosyls contribute substantially to octamer stabilization. The (H2A-H2B) dimer positive cooperativity in association with the (H3-H4)2 tetramer was found. This cooperativity is caused by interaction between association sites with a two order increase in an apparent constant of dimers with tetramer association. The histone octamer was determined to be of asymmetric structure due to unequivolency of the two binding sites for the (H2A-H2B) dimers.  相似文献   

8.
9.
10.
We have studied the sample concentration-dependent and external stress-dependent stability of native and reconstituted nucleosomal arrays. Whereas upon stretching a single chromatin fiber in a solution of very low chromatin concentration the statistical distribution of DNA length released upon nucleosome unfolding shows only one population centered around approximately 25 nm, in nucleosome stabilizing conditions a second population with average length of approximately 50 nm was observed. Using radioactively labeled histone H3 and H2B, we demonstrate that upon lowering the chromatin concentration to very low values, first the linker histones are released, followed by the H2A-H2B dimer, whereas the H3-H4 tetramer remains stably attached to DNA even at the lowest concentration studied. The nucleosomal arrays reconstituted on a 5 S rDNA tandem repeat exhibited similar behavior. This suggests that the 25-nm disruption length is a consequence of the histone H2A-H2B dimer dissociation from the histone octamer. In nucleosome stabilizing conditions, a full approximately 145 bp is constrained in the nucleosome. Our data demonstrate that the nucleosome stability and histone octamer integrity can be severely degraded in experiments where the sample concentration is low.  相似文献   

11.
The theoretical analysis of nucleosome stability at low ionic strength has been performed on the basis of consideration of different contributions to the free energy of compact state of the nucleosome DNA terminal regions. The proposed model explains: the fact of low-salt structural change; the transition point (approximately 1.7 mM NaCl) and width (approximately 1 mM); the shift of the transition to the higher salt concentrations in the case of histones tails removal by trypsin. According to the model the increase of electrostatic repulsion between neighbouring turns of DNA superhelix is the main cause of the unwinding of nucleosomal DNA terminal regions in the course of low-salt structural change. The interactions between histone (H2A-H2B) dimer and (H3-H4)2 tetramer provide the compact state of the nucleosomal DNA terminal regions. The existence of electrostatic interactions of nucleosomal DNA terminal regions with tetramer was suggested. These interactions can provide the compact state of nucleosomal DNA at physiological ionic strength even in the absence of (H2A-H2B) dimer.  相似文献   

12.
Nucleosome assembly protein 1 (NAP1) binds to histone H2A-H2B heterodimers, mediating their deposition on and eviction from the nucleosome. Human NAP1 (hNAP1) consists of a dimerization core domain and intrinsically disordered C-terminal acidic domain (CTAD), both of which are essential for H2A-H2B binding. Several structures of NAP1 proteins bound to H2A-H2B exhibit binding polymorphisms of the core domain, but the distinct structural roles of the core and CTAD domains remain elusive. Here, we have examined dynamic structures of the full-length hNAP1 dimer bound to one and two H2A-H2B heterodimers by integrative methods. Nuclear magnetic resonance (NMR) spectroscopy of full-length hNAP1 showed CTAD binding to H2A-H2B. Atomic force microscopy revealed that hNAP1 forms oligomers of tandem repeated dimers; therefore, we generated a stable dimeric hNAP1 mutant exhibiting the same H2A-H2B binding affinity as wild-type hNAP1. Size exclusion chromatography (SEC), multi-angle light scattering (MALS) and small angle X-ray scattering (SAXS), followed by modelling and molecular dynamics simulations, have been used to reveal the stepwise dynamic complex structures of hNAP1 binding to one and two H2A-H2B heterodimers. The first H2A-H2B dimer binds mainly to the core domain of hNAP1, while the second H2A-H2B binds dynamically to both CTADs. Based on our findings, we present a model of the eviction of H2A-H2B from nucleosomes by NAP1.  相似文献   

13.
Guanidine hydrochloride and urea-induced unfolding of B. malayi hexokinase (BmHk), a tetrameric protein, was examined in detail by using various optical spectroscopic techniques, enzymatic activity measurements, and size-exclusion chromatography. The equilibrium unfolding of BmHk by guanidine hydrochloride (GdmCl) and urea proceeded through stabilization of several unique oligomeric intermediates. In the presence of low concentrations of GdmCl, stabilization of an enzymatically active folded dimer of BmHk was observed. However an enzymatically inactive dimer of BmHk was observed for urea-treated BmHk. This is the first report of an enzymatically active dimer of hexokinase from any human filarial parasite. Furthermore, although complete recovery of the native enzyme was observed on refolding of BmHk samples denatured by use of low concentrations of GdmCl or urea, no recovery of the native enzyme was observed for BmHk samples denatured by use of high concentrations of GdmCl or urea.  相似文献   

14.
The folding pathway of the histone H2A-H2B heterodimer minimally includes an on-pathway, dimeric, burst-phase intermediate, I2. The partially folded H2A and H2B monomers populated at equilibrium were characterized as potential monomeric kinetic intermediates. Folding kinetics were compared for initiation from isolated, folded monomers and the heterodimer unfolded in 4 M urea. The observed rates were virtually identical above 0.4 M urea, exhibiting a log-linear relationship on the final denaturant concentration. Below ∼ 0.4 M urea (concentrations inaccessible from the  4-M urea unfolded state), a rollover in the rates was observed; this suggests that a component of the I2 ensemble contains non-native structure that rearranges/isomerizes to a more native-like species. The contribution of helix propensity to the stability of the I2 ensemble was assessed with a set of H2A-H2B mutants containing Ala and Gly replacements at nine sites, focusing mainly on the long, central α2 helix. Equilibrium and kinetic folding/unfolding data were collected to determine the effects of the mutations on the stability of I2 and the transition state between I2 and N2. This limited mutational study indicated that residues in the α2 helices of H2A and H2B as well as α1 of H2B and both the C-terminus of α3 and the short αC helix of H2A contribute to the stability of the I2 burst-phase species. Interestingly, at least eight of the nine targeted residues stabilize I2 by interactions that are non-native to some extent. Given that destabilizing I2 and these non-native interactions does not accelerate folding, it is concluded that the native and non-native structures present in the I2 ensemble enable efficient folding of H2A-H2B.  相似文献   

15.
We have used the measurements of the histone fluorescence parameters to study the influence of the ionic strength on histone-DNA and histone-histone interactions in reconstructed nucleosomes. The ionic strength increase lead to the two-stage nucleosome dissociation. The dimer H2A-H2B dissociates at the first stage and the tetramer (H3-H4)2 at the second one. The dimer H2A-H2B dissociation from nucleosome is a two-stage process also. The ionic bonds between (H2A-H2B) histone dimer and DNA break at first and then the dissociation of dimer from histone tetramer (H3-H4)2 occurs. According to the proposed model the dissociation accompanying a nucleosome "swelling" and an increase of DNA curvature radius. It was shown that the energy of electrostatic interactions between histone dimer and DNA is sufficiently less than the energy of dimer-tetramer interaction. We propose that the nucleosome DNA ends interact with the dimer and tetramer simultaneously. The calculated number (approximately 30 divided by 40) of ionic bonds between DNA and histone octamer globular part practically coincides with the number of exposed cationic groups on the surface of octamer globular head. On this basis we have assumed that the spatial distribution of these groups is precisely determined, which explains the high evolutionary conservatism of the histone primary structure.  相似文献   

16.
The free energies of dimer dissociation of the retroviral proteases (PRs) of human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) were determined by measuring the effects of denaturants on the protein fluorescence upon the unfolding of the enzymes. HIV-1 PR was more stable to denaturation by chaotropes and extremes of pH and temperature than SIV PR, indicating that the former enzyme has greater conformational stability. The urea unfolding curves of both proteases were sigmoidal and single phase. The midpoints of the transition curves increased with increasing protein concentrations. These data were best described by and fitted to a two-state model in which folded dimers were in equilibrium with unfolded monomers. This denaturation model conforms to cases in which protein unfolding and dimer dissociation are concomitant processes in which folded monomers do not exist [Bowie, J. U., & Sauer, R. T. (1989) Biochemistry 28, 7140-7143]. Accordingly, the free energies of unfolding reflect the stabilities of the protease dimers, which for HIV-1 PR and SIV PR were, respectively, delta GuH2O = 14 +/- 1 kcal/mol (Ku = 39 pM) and 13 +/- 1 kcal/mol (Ku = 180 pM). The binding of a tight-binding, competitive inhibitor greatly stabilized HIV-1 PR toward urea-induced unfolding (delta GuH2O = 19.3 +/- 0.7 kcal/mol, Ku = 7.0 fM). There were also profound effects caused by adverse pH on the protein conformation for both HIV-1 PR and SIV PR, resulting in unfolding at pH values above and below the respective optimal ranges of 4.0-8.0 and 4.0-7.0  相似文献   

17.
We determined the 2.45 A crystal structure of the nucleosome core particle from Drosophila melanogaster and compared it to that of Xenopus laevis bound to the identical 147 base-pair DNA fragment derived from human alpha-satellite DNA. Differences between the two structures primarily reflect 16 amino acid substitutions between species, 15 of which are in histones H2A and H2B. Four of these involve histone tail residues, resulting in subtly altered protein-DNA interactions that exemplify the structural plasticity of these tails. Of the 12 substitutions occurring within the histone core regions, five involve small, solvent-exposed residues not involved in intraparticle interactions. The remaining seven involve buried hydrophobic residues, and appear to have coevolved so as to preserve the volume of side chains within the H2A hydrophobic core and H2A-H2B dimer interface. Thus, apart from variations in the histone tails, amino acid substitutions that differentiate Drosophila from Xenopus histones occur in mutually compensatory combinations. This highlights the tight evolutionary constraints exerted on histones since the vertebrate and invertebrate lineages diverged.  相似文献   

18.
The thermodynamic and spectroscopic properties of a cysteine-free variant of Escherichia coli dihydrofolate reductase (AS-DHFR) were investigated using the combined effects of urea and temperature as denaturing agents. Circular dichroism (CD), absorption, and fluorescence spectra were recorded during temperature-induced unfolding at different urea concentrations and during urea-induced unfolding at different temperatures. The first three vectors obtained by singular-value decomposition of each set of unfolding spectra were incorporated into a global analysis of a unique thermodynamic model. Although individual unfolding profiles can be described as a two-state process, a simultaneous fit of 99 vectors requires a three-state model as the minimal scheme to describe the unfolding reaction along both perturbation axes. The model, which involves native (N), intermediate (I), and unfolded (U) states, predicts a maximum apparent stability, DeltaG degrees (NU), of 6 kcal mol(-)(1) at 15 degrees C, an apparent m(NU) value of 2 kcal mol(-)(1) M(-)(1), and an apparent heat capacity change, DeltaC(p)()(-NU), of 2.5 kcal mol(-)(1) K(-)(1). The intermediate species has a maximum stability of approximately 2 kcal mol(-)(1) and a compactness closer to that of the native than to that of the unfolded state. The population of the intermediate is maximal ( approximately 70%) around 50 degrees C and falls below the limits of detection of > or =2 M urea or at temperatures of <35 or >65 degrees C. The fluorescence properties of the equilibrium intermediate resemble those of a transient intermediate detected during refolding from the urea-denatured state, suggesting that a tryptophan-containing hydrophobic cluster in the adenosine-binding domain plays a key role in both the equilibrium and kinetic reactions. The CD spectroscopic properties of the native state reveal the presence of two principal isoforms that differ in ligand binding affinities and in the packing of the adenosine-binding domain. The relative populations of these species change slightly with temperature and do not depend on the urea concentration, implying that the two native isoforms are well-structured and compact. Global analysis of data from multiple spectroscopic probes and several methods of unfolding is a powerful tool for revealing structural and thermodynamic properties of partially and fully folded forms of DHFR.  相似文献   

19.
Human plasma apolipoprotein A-2 (apoA-2) is the second major protein of the high-density lipoproteins that mediate the transport and metabolism of cholesterol. Using CD spectroscopy and differential scanning calorimetry, we demonstrate that the structure of lipid-free apoA-2 in neutral low-salt solutions is most stable at approximately 25 degrees C and unfolds reversibly both upon heating and cooling from 25 degrees C. High-temperature unfolding of apoA-2, monitored by far-UV CD, extends from 25-85 degrees C with midpoint Th = 56 +/- 2 degrees C and vant Hoff's enthalpy delta H(Th) = 17 +/- 2 kcal/mol that is substantially lower than the expected enthalpy of melting of the alpha-helical structure. This suggests low-cooperativity apoA-2 unfolding. The apparent free energy of apoA-2 stabilization inferred from the CD analysis of the thermal unfolding, delta G(app)(25 degrees) = 0.82 +/- 0.15 kcal/mol, agrees with the value determined from chemical denaturation. Enhanced low-temperature stability of apoA-2 observed upon increase in Na2HPO4 concentration from 0.3 mM to 50 mM or addition of 10% glycerol may be linked to reduced water activity. The close proximity of the heat and cold unfolding transitions, that is consistent with low delta G(app)(25 degrees), indicates that lipid-free apoA-2 has a substantial hydrophobic core but is only marginally stable under near-physiological solvent conditions. This suggests that in vivo apoA-2 transfer is unlikely to proceed via the lipid-free state. Low delta H(Th) and low apparent delta Cp approximately 0.52 kcal/mol.K inferred from the far-UV CD analysis of apoA-2 unfolding, and absence of tertiary packing interactions involving Tyr groups suggested by near-UV CD, are consistent with a molten globular-like state of lipid-free apoA-2.  相似文献   

20.
Eukaryotic chromatin is highly dynamic and turns over rapidly even in the absence of DNA replication. Here we show that the acidic histone chaperone nucleosome assembly protein 1 (NAP-1) from yeast reversibly removes and replaces histone protein dimer H2A-H2B or histone variant dimers from assembled nucleosomes, resulting in active histone exchange. Transient removal of H2A-H2B dimers facilitates nucleosome sliding along the DNA to a thermodynamically favorable position. Histone exchange as well as nucleosome sliding is independent of ATP and relies on the presence of the C-terminal acidic domain of yeast NAP-1, even though this region is not required for histone binding and chromatin assembly. Our results suggest a novel role for NAP-1 (and perhaps other acidic histone chaperones) in mediating chromatin fluidity by incorporating histone variants and assisting nucleosome sliding. NAP-1 may function either untargeted (if acting alone) or may be targeted to specific regions within the genome through interactions with additional factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号