首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ecuador will experience a significant expansion of the oil industry in its Amazonian region, one of the most biodiverse areas of the world. In view of the changes that are about to come, we explore the conflicts between oil extraction interests and biodiversity protection and apply systematic conservation planning to identify priority areas that should be protected in different oil exploitation scenarios. First, we quantified the current extent of oil blocks and protected zones and their overlap with two biodiversity indicators: 25 ecosystems and 745 species (whose distributions were estimated via species distribution models). With the new scheme of oil exploitation, oil blocks cover 68% (68,196 km2) of the Ecuadorian Amazon; half of it occupied by new blocks open for bids in the southern Amazon. This region is especially vulnerable to biodiversity losses, because peaks of species diversity, 19 ecosystems, and a third of its protected zones coincide spatially with oil blocks. Under these circumstances, we used Marxan software to identify priority areas for conservation outside oil blocks, but their coverage was insufficient to completely represent biodiversity. Instead, priority areas that include southern oil blocks provide a higher representation of biodiversity indicators. Therefore, preserving the southern Amazon becomes essential to improve the protection of Amazonian biodiversity in Ecuador, and avoiding oil exploitation in these areas (33% of the extent of southern oil blocks) should be considered a conservation alternative. Also, it is highly recommended to improve current oil exploitation technology to reduce environmental impacts in the region, especially within five oil blocks that we identified as most valuable for the conservation of biodiversity. The application of these and other recommendations depends heavily on the Ecuadorian government, which needs to find a better balance between the use of the Amazon resources and biodiversity conservation.  相似文献   

2.
Protected areas are crucial for Amazonian nature conservation. Many Amazonian reserves have been selected systematically to achieve biodiversity representativeness. We review the role natural-scientific understanding has played in reserve selection, and evaluate the theoretical potential of the existing reserves to cover a complete sample of the species diversity of the Amazonian rainforest biome. In total, 108 reserves (604,832 km2) are treated as strictly protected and Amazonian; 87 of these can be seen as systematically selected to sample species diversity (75.3% of total area). Because direct knowledge on all species distributions is unavailable, surrogates have been used to select reserves: direct information on some species distributions (15 reserves, 14.8% of total area); species distribution patterns predicted on the basis of conceptual models, mainly the Pleistocene refuge hypothesis, (5/10.3%); environmental units (46/27.3%); or a combination of distribution patterns and environmental units (21/22.9%). None of these surrogates are reliable: direct information on species distributions is inadequate; the Pleistocene refuge hypothesis is highly controversial; and environmental classifications do not capture all relevant ecological variation, and their relevance for species distribution patterns is undocumented. Hence, Amazonian reserves cannot be safely assumed to capture all Amazonian species. To improve the situation, transparency and an active dialogue with the scientific community should be integral to conservation planning. We suggest that the best currently available approach for sampling Amazonian species diversity in reserve selection is to simultaneously inventory indicator plant species and climatic and geological conditions, and to combine field studies with remote sensing.  相似文献   

3.
Modelling potential species distributions has become a powerful tool for botanists in recent years. Using herbarium specimen data and GIS desktop software, we modelled the potential distribution of 36 endemic and 47 non‐endemic species of Anthurium (Araceae) in Ecuador based on mean annual temperature and humidity. Our results indicate the most important region for endemics in western Ecuador lies between the Andes and Coastal mountain ranges between 200 and 700 m, while for eastern Ecuador a belt of potential high diversity occurs directly along the foothills of the Andes under 1000 m. A very interesting result of this study highlights a site of predicted high species diversity at the borders of Guyas, Cañar, Bolivar, and Chimborazo, as well as sites within the Cordillera del Condor along the border with Peru. Potential richness for non‐endemic Anthurium species was similar to that of endemics with the inclusion of a large area of Amazonian lowlands in the east of the country. Over 40% of the protected areas in Ecuador occur in the eastern Amazonian lowlands, an area of low diversity for Anthurium endemics. Overall, for areas with potential high concentrations of endemic species identified in this study, only 3.1% are within Ecuador's protected areas.  相似文献   

4.
Aim We aimed to complete the first systematic assessment of extinction risk based on projected population declines derived from spatially explicit habitat projections for any taxonomic group at a regional scale, to use the outputs to ascertain the efficacy of an existing protected area network in covering species of conservation concern, and identify gaps therein. Location This study focused on Amazonia; an area of exceptional biodiversity, currently experiencing the highest absolute rate of forest loss globally but where the proportion of species assessed as ‘threatened’ on the International Union for the Conservation of Nature (IUCN) Red List in the region is below global averages. Methods For all forest‐dependent Amazonian bird species (814), we revised extinction risk estimates by combining data from a spatially explicit deforestation model with generation length estimates. By overlaying distribution maps for these revised threatened species, we identified crisis areas (areas of projected deforestation supporting the highest numbers of threatened species), refugia (areas projected to retain forest supporting the highest numbers of threatened species) and areas of high irreplaceability: short‐ and long‐term priorities for new protected areas (PAs). Results The number of species qualifying as threatened rose substantially from 24 (3%) to 64–92 (8–11%). Areas of particular concern are the crisis and highly irreplaceable areas within the ‘arc of deforestation’ in the southern Brazilian Amazon states of Rondônia, Mato Grosso and Pará. Main conclusions Through a novel application of the IUCN Red List criteria, we present a spatially accurate rendering of the extinction risks of Amazonian birds. Important areas in the Amazon are not secure. We identify priorities for expansion of the PAs network and key locations where protection should be enforced. We recommend a collaborative approach employing our methods to repeat this process for other taxonomic groups.  相似文献   

5.
Diversifications within a biota are due to several factors. Although some of these are untestable with current analytical methods, hierarchical congruence obtained with different cladistic methods and based on independent taxa are undoubtedly important. In the recent past, most hypotheses of historical biogeography (e.g. refugial, riverine, disturbance, vicariance) were tested on the Amazonian biota, selecting a number of diverse organisms such as plants, anurans, lizards, butterflies, birds and monkeys. In this study we used parsimony analysis of endemicity to infer historical relationships among 16 interfluvial areas in the Amazonian lowlands based on raw distributions of 114 Papilioninae (Lepidoptera). The analysis yielded two most parsimonious trees of area relationships. One tree was characterized by two main clusters of areas which showed a separation of Guyanan + south-east Amazonian interfluvial areas from western Amazonian interfluvial areas. The second tree showed the Guyanan interfluvial areas basal to a cluster which included all the other interfluvial areas. This latter cluster was subdivided into two main groups of areas separating the south-east Amazonian and the western Amazonian interfluvial areas. This result is discussed in the light of previous hypotheses obtained with the same method using some vertebrate taxa in the Amazonian lowlands. Likewise, comparisons with other hypotheses on lineages of birds, mammals and butterflies obtained applying cladistic biogeographical methods are made. The two alternative vicariant patterns presented for papilionid butterflies are strictly congruent with those for birds.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 345–357.  相似文献   

6.
The establishment and maintenance of a system of protected areas is central to regional and global strategies for the conservation of biodiversity. The current global trend towards human population growth and widespread environmental degradation means that such areas are becoming increasingly isolated, fragmented habitat islands. In regions in which this process is well advanced, a high proportion of species are thus predicted to have become restricted to protected areas. Here, using uniquely detailed datasets for Britain, a region with close to the global level of percentage coverage by statutory protected areas, we determine the extent of restriction of species of conservation concern to these areas. On the basis of currently known distributions, more than a half of such species are highly dependent on protected areas for their continued persistence, occurring either entirely or largely within their bounds. Such coverage is of particular importance for those species with narrower distributions, and therefore, under the greatest threats, underlining the vital importance of adequately resourcing, maintaining, and developing protected areas to prevent these species from being lost.  相似文献   

7.
A comparative study of species assemblages and population densities was conducted on Amazonian monkey communities in 16 areas, ranging from 3°S latitude in northern Peru to 18°S latitude in southern Bolivia. The habitats ranged from several types of tropical rain forest in the more northern latitudes to dry, deciduous forest in the southernmost study area. The monkey populations of three of the study areas have historically received light hunting pressure; the rest have been moderately to heavily hunted. A transect census technique was used to estimate the relative and absolute densities of all diurnal monkey species except Cebuella pygmaea. The number of coexisting monkey species ranged from 4–6 in the southern areas to 12–14 in the northern areas. The reduction in species richness in central and southern areas of Bolivia is probably attributable to several inimical habitat factors. Predation by humans was found to be the single most important factor affecting monkey densities. Monkey densities, and especially biomasses, were much lower in areas not protected from hunting than in protected areas. Hunting did not affect all species equally. Larger-sized species are hunted more and have severely reduced numbers in unprotected areas, whereas the densities of smaller species are not noticeably diminished in unprotected areas. Large, herbivorous monkey species contributed the major proportion of the total monkey biomass in protected areas. The strong influence of hunting has largely obscured the effects of other factors on population densities.  相似文献   

8.
Pelagic ecosystems support a significant and vital component of the ocean's productivity and biodiversity. They are also heavily exploited and, as a result, are the focus of numerous spatial planning initiatives. Over the past decade, there has been increasing enthusiasm for protected areas as a tool for pelagic conservation, however, few have been implemented. Here we demonstrate an approach to plan protected areas that address the physical and biological dynamics typical of the pelagic realm. Specifically, we provide an example of an approach to planning protected areas that integrates pelagic and benthic conservation in the southern Benguela and Agulhas Bank ecosystems off South Africa. Our aim was to represent species of importance to fisheries and species of conservation concern within protected areas. In addition to representation, we ensured that protected areas were designed to consider pelagic dynamics, characterized from time-series data on key oceanographic processes, together with data on the abundance of small pelagic fishes. We found that, to have the highest likelihood of reaching conservation targets, protected area selection should be based on time-specific data rather than data averaged across time. More generally, we argue that innovative methods are needed to conserve ephemeral and dynamic pelagic biodiversity.  相似文献   

9.
海岛生态系统独特而脆弱,加强海岛保护区的建设和管理对于维护海岛生态系统平衡、促进海岛资源与环境可持续利用具有重要的意义。文章对中国海岛保护区的发展动态和分布现状进行了分析。截至2011年底,中国已建立各类涉及海岛的保护区117处,初步形成了布局基本合理、类型较为齐全、功能渐趋完善的海岛保护区体系。文章绘制了中国海岛保护区分布图,分析了海岛保护区的地理分布、类型分布和主管部门状况等。目前中国海岛保护区存在着保护区建设和管理经费不足,经济发展与保护的矛盾日益突出,保护区类型布局存在空缺、地方级保护区管理机构和科研监测能力有待加强等问题,并根据这些问题,提出相应的对策。  相似文献   

10.
喀喇昆仑山-喜马拉雅山脉是泛第三极区域的重要组成部分。对中国与阿富汗、巴基斯坦、印度、尼泊尔、不丹和缅甸等6国交界的喀喇昆仑山-喜马拉雅山脉地区生态区和保护地分布开展研究。喀喇昆仑山-喜马拉雅山脉地区总面积902843.76 km2,跨古北界和东洋界两大全球重要的生物地理区域,分布有14个生态区,其中有55处保护地。保护地由国家公园和自然保护区组成,主要分布在东喜马拉雅亚高山针叶林、喜马拉雅亚热带阔叶林和东喜马拉雅阔叶林3个生态区内,面积为159063.30 km2,占喀喇昆仑山-喜马拉雅山脉地区总面积的17.62%。保护地中有41处国家公园,占保护地总数的74.5%;有25处为多国毗邻,占总数的45.45%。保护地的地理集中指数都大于完全平均分布值(37.796),空间分布呈集聚状态;其中自然保护区分布的不均衡度高于国家公园,分布在中国,尼泊尔和印度三国境内。核密度分析显示中尼边境与中印边境区域的保护地分布集中度高。20世纪30年代开始,特别是80年代以来各国建立保护地,目前已经形成全球著名的保护地集群带。对于进一步推进喀喇昆仑山-喜马拉雅山脉地区国家公园跨境合作具有重要意义。  相似文献   

11.
Protected areas (PAs) are under increasing pressure to demonstrate their broader value and contribution to society. Scientific research and associated knowledge production comprise one such value, which has received relatively little attention in the academic literature. Here, we use the Amazon region as a case study to quantify scientific knowledge production (as measured by scientific publications in peer-reviewed journals) in PAs and identify the main biophysical, geographical and social characteristics that influence such production. We adopt a multi-model inference approach with an innovative hurdle regression model to independently assess the factors influencing the presence of research and the number of studies in PAs. Our results indicate a highly skewed pattern of scientific production, with many PAs with few or no associated scientific articles. Larger, older and more highly protected PAs in Ecuador and Peru were most likely to have scientific production, while time since first publication was most strongly associated with the number of publications from a PA. These findings provide important insights that could be used to support and strengthen policy aimed at increasing the value of Amazonian protected areas for scientific research.  相似文献   

12.
We censused primate populations at three non-hunted 'terra firme' forests of south-eastern Colombian Amazonia. The aggregate biomass densities of diurnal primates at all sites were amongst the lowest recorded for any non-hunted forest in western Amazonia and elsewhere in the Neotropics. Densities of red howler monkeys were low, as is typical in Amazonian terra firme forests far removed from white-water rivers, and densities of woolly monkeys were 1.5-3.5 times lower than those estimated for this species in central-western Brazilian Amazonia. Densities of small to mid-sized primates except for brown capuchins (Cebus apella) and white-faced capuchins (Cebus albifrons) were similar to those of other oligotrophic Amazonian forest sites. Our results are in agreement with other studies showing that terra firme forests of lowland Amazonia typically sustain a low biomass density of primates and other mid-sized to large vertebrates. Large reserves are therefore required to assure the viability of primate populations in oligotrophic systems. Given the escalating negative impacts of human habitat disturbance and hunting in Colombian Amazonia, we urge that a baseline sampling protocol to quantify the abundance and distribution of the harvest-sensitive vertebrate fauna be established within protected areas and the large indigenous reserves so that conservation efforts can be defined and implemented.  相似文献   

13.
Tang Z  Fang J  Sun J  Gaston KJ 《PloS one》2011,6(4):e19116
Given the central importance of protected area systems in local, regional and global conservation strategies, it is vital that there is a good understanding of their effectiveness in maintaining ecological functioning. Here, we provide, to our knowledge, the first such global analysis, focusing on plant production, a "supporting" ecosystem function necessary for multiple other ecosystem services. We use data on the normalized difference vegetation index (NDVI) as a measure of variation in plant production in the core, boundary and surroundings of more than 1000 large protected areas over a 25 year period. Forested protected areas were higher (or similar), and those non-forested were lower (or similar), in NDVI than their surrounding areas, and these differences have been sustained. The differences from surrounding areas have increased for evergreen broadleaf forests and barren grounds, decreased for grasslands, and remained similar for deciduous forests, woodlands, and shrublands, reflecting different pressures on those surroundings. These results are consistent with protected areas being effective both in the representation and maintenance of plant production. However, widespread overall increases in NDVI during the study period suggest that plant production within the core of non-forested protected areas has become higher than it was in the surroundings of those areas in 1982, highlighting that whilst the distinctiveness of protected areas from their surroundings has persisted the nature of that difference has changed.  相似文献   

14.
Waterbirds are a globally-distributed, species-rich group of birds that are critically dependent upon wetland habitats. They can be used as ecosystem sentinels for wetlands, which as well as providing ecosystem services and functions essential to humans, are important habitats for a wide range of plant and animal taxa. Here we carry out the first global analysis of inland-breeding waterbird distributions using data from 471 waterbird species in 28 families to identify global areas of high waterbird diversity. First we identify the primary area of high diversity for all inland-breeding waterbird species to be in Eastern Africa. For globally threatened inland-breeding waterbirds, the area of highest diversity is in Eastern China. Second, we show that the current network of protected areas provides poor coverage for threatened waterbirds in Eastern and Central Asia, and Northern India. In contrast, there is a higher protected area coverage in most of Europe and Brazil. Targeting the specific areas that have the highest numbers of species and the poorest coverage of protected areas is vital for both waterbird and wetland conservation.  相似文献   

15.
Endemicity is important for the delimitation of conservation areas. Endemic areas are those that contain two or more taxa with their distribution restricted to the area. The aim of this study was to detect endemic areas for palms in the Amazon region and to determine whether the species that define these endemic areas are protected within conservation units. Records of occurrence were extracted from the global biodiversity information facility (GBIF). The final dataset consisted of 17,310 records, for 177 species of Amazonian palms. For analysis we used parsimony analysis of endemicity (PAE) and NDM-VNDM program, and grid square size of 1° and 3° as operational geographic units (OGUs). The distribution of endemic species was superimposed on occurrence of the conservation units (CUs). PAE did not show endemic areas in grid squares of 1°, but found 10 palm endemic areas in grid squares of 3° in the western Amazon and Andean sub-region. However, the NDM-VNDM program identified an endemic area in grid squares of 1° located at the eastern Guiana with endemicity score = 2.9, and in grid squares of 3° it identified seven consensus areas with endemicity score > 6.0, all in the western Amazon. The combination of PAE and NDM-VNDM analyses resulted in eight endemic palm areas in the combined western Amazon and Andean sub-region. Of the species that define the endemic areas, five are threatened with extinction in one of three IUCN categories (EN, VU, NT), and they are not protected in any conservation units. The western Amazon, besides having high palm richness, also has palm endemic areas, especially, near the Andean sub-region and the Peruvian Amazon.  相似文献   

16.
The Amazonian Manatee Trichechus inunguis (Natterer, 1883) is the only exclusively freshwater sirenian and the smallest of the living species. Its inability to reduce peripheral heat loss limits its distribution to tropical waters. The species is endemic to the Amazonian region, being distributed throughout the Amazon basin, occurring mainly in calm waters and lakes. The species has been commercially exploited since 1542, with the meat and hide being the main products extracted. This commercial exploitation, combined with their very low reproductive rate, has seriously reduced the manatee population. Therefore the Amazonian Manatee is now considered an endangered species. Although it is protected by most of the countries where it occurs, there is no law enforcement, and the species is still captured throughout the Amazon. Data on general biology, physiology and management of the Amazonian Manatee, as well as its status and recommendations for its conservation, are presented.  相似文献   

17.
Primates are globally recognized as an important component of biodiversity, however, more than half of primate species in the world are threatened and agriculture expansion is one of the main threats. Brazil has one of the largest networks of protected areas (PAs) in the world, but there are some conservation gaps, such as the Amazonian savannas. We aim to identify a network of priority areas to conserve a Brazilian Amazonian savanna highly threatened by agriculture expansion, by using seven primate species and four vegetation types as targets. We constructed species distribution models (SDMs) for the primates and used a Systematic Conservation Planning approach. We defined as a quantitative conservation target the proportion of the distribution of each primate species within the network according to traits related to their vulnerability to extinction. In addition, we set a target of including at least 30% of each savanna type within priority areas. We created a map of potential use of the land for agriculture and another of environmental risk, which were included as costs in the decision process, and together with the SDMs and vegetation types, identified the network of priority areas by using the software Marxan. We evaluated the feasibility of implementing conservation actions, such as establishing Conservation Units (e.g. reserves managed by the government), or implementing community-based conservation actions in each priority area. Additionally, we estimated the economic investment (US$/year) required to establish Conservation Units across the priority areas. Conservation targets for primates and vegetation types were met by protecting 3,240 km2 of the Savannas of Amapá. An investment of approximately US$958,122/year over five years is required to turn these priority areas into Conservation Units, however, we propose other strategies such as conservation on community lands and public policies. All these strategies would allow for protecting forest cover and the heterogeneous environments that are suitable for primates and other biodiversity components.  相似文献   

18.
The Beni savannas (locally referred to as pampas) is composed of two clearly differentiated ecoregions, the Llanos de Moxos (or Moxos) and the Beni Cerrado. Both tropical savannas are shaped to a greater (Moxos) or lesser (Beni Cerrado) by cycles of drought and flood and the labor of generation of farmers. It contains floristic elements of four biogeographic regions (Amazonian, Chaco, Cerrado and Chiquitana). However, in spite of their biological richness, they are little represented in the National System of Protected Areas (SNAP, in Spanish). By employing an ecoregion and sub-ecoregion approach, we examined the representation of both savanna-type ecoregions in the Departmental System of Protected Areas (SDAP, in Spanish), which includes national, departmental, municipal, and private protected areas. The study also enabled us to compare Bolivia’s newest ecoregion/vegetation zones maps as applied to the both savannas and to produce a sub-ecoregion map for the Beni department (northeastern Bolivia). Our results show that the Llanos de Moxos and the Beni Cerrado are found in protected areas of departmental and municipal level. Although they are still under-represented (mainly the Beni Cerrado), they have nonetheless important extensions inside these protected areas. A better representation of these zones would guarantee improved levels of protection of these unique ecosystems. On the other hand, our study shows the importance of the conservation-representation target relationships (sensu Rodrigues et al. 2004). This is the first time that this approach is used to examine gaps of floristic representativeness of savanna-type ecoregions showing that the traditional 10% minimal conservation target should be used with caution.  相似文献   

19.
Protected areas are increasingly considered to play a key role in the global maintenance of ecosystem processes and the ecosystem services they provide. It is thus vital to assess the extent to which existing protected area systems represent those services. Here, for the first time, we document the effectiveness of the current Chilean protected area system and its planned extensions in representing both ecosystem services (plant productivity, carbon storage and agricultural production) and biodiversity. Additionally, we evaluate the effectiveness of protected areas based on their respective management objectives. Our results show that existing protected areas in Chile do not contain an unusually high proportion of carbon storage (14.9%), agricultural production (0.2%) or biodiversity (11.8%), and also represent a low level of plant productivity (Normalized Difference Vegetation Index of 0.38). Proposed additional priority sites enhance the representation of ecosystem services and biodiversity, but not sufficiently to attain levels of representation higher than would be expected for their area of coverage. Moreover, when the species groups were assessed separately, amphibians was the only one well represented. Suggested priority sites for biodiversity conservation, without formal protection yet, was the only protected area category that over-represents carbon storage, agricultural production and biodiversity. The low representation of ecosystem services and species’ distribution ranges by the current protected area system is because these protected areas are heavily biased toward southern Chile, and contain large extents of ice and bare rock. The designation and management of proposed priority sites needs to be addressed in order to increase the representation of ecosystem services within the Chilean protected area system.  相似文献   

20.
金宇  周可新  高吉喜  穆少杰  张小华 《生态学报》2016,36(23):7702-7712
准确可靠地识别国家重点保护陆生脊椎动物物种的优先保护区,是生物多样性保护的热点问题之一。采用随机森林(random forests)模型,基于12个环境变量,对中国263种国家重点保护陆生脊椎动物建模,并预测各个物种在背景点的适生概率,迭加计算得到国家重点保护陆生脊椎动物物种的生境适宜性指数。此外,基于对生境适宜性指数的空间自相关分析,识别和确定国家重点保护陆生脊椎动物物种优先保护区,并对优先保护区目前的被保护情况进行分析。结果表明,国家重点保护陆生脊椎动物物种的优先保护区的面积为103.16万km~2,约占我国国土面积的10.90%。优先保护区主要分布在我国的西部地区,包括西南地区的秦岭-大巴山山区、云南省与印度及缅甸的交界地区、武陵山山区、喜马拉雅山-横断山脉山区、阿尔泰山脉山区、天山山脉山区、昆仑山山脉山区;东北的大、小兴安岭、东北-华南沿海地区及长江中下游地区有少量分布。优先保护区中被保护的面积为50.40万km~2,占优先保护区总面积的48.86%,保护率偏低,未被充分保护。利用系统聚类分析,将未被保护的优先保护区划分成3种优先保护顺序,以期为相关部门的决策提供科学依据,更好地保护生物多样性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号