首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A coenzyme B12-dependent glycerol dehydratase from Lactobacillus reuteri has been purified and characterized. The dehydratase has a molecular weight of approximately 200,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis yielded a single major band with a molecular weight of 52,000. Km values for substrates and coenzyme B12 were in the millimolar and the submicromolar range, respectively.  相似文献   

3.
An alanine racemase gene from Lb. reuteri was cloned by using degenerate oligonucleotides corresponding to conserved regions derived from several bacterial alanine racemases. The protein is 375αα in length and shows 63.6% homology to the Lb. plantarum alanine racemase. Unlike the single alanine racemase activity found in Lb. plantarum, deletion of the Lb. reuteri alanine racemase reveals a second activity, which is inhibited by β-chloro-D-alanine. Received: 26 June 2001 / Accepted: 30 July 2001  相似文献   

4.
The invertase of Lactobacillus reuteri CRL 1100 is a glycoprotein composed by a single subunit with a molecular weight of 58 kDa. The enzyme was stable below 45°C over a wide pH range (4.5–7.0) with maximum activity at pH 6.0 and 37°C. The invertase activity was significantly inhibited by bivalent metal ions (Ca++, Cu++, Cd++, and Hg++), β-mercaptoethanol, and dithiothreitol and partially improved by ethylenediaminetetraacetic acid. The enzyme was purified 32 times over the crude extract by gel filtration and ion-exchange chromatography with a recovery of 17%. The K m and Vmax values for sucrose were 6.66 mM and 0.028 μmol/min, respectively. An invertase is purified and characterized for the first time in Lactobacillus, and it proved to be a β-fructofuranosidase. Received: 13 August 1999 / Accepted: 15 September 1999  相似文献   

5.
Abstract

Glucansucrases, which can be produced by different Lactic Acid Bacteria (LAB), catalyze the synthesis of α-glucans with different structures and properties using sucrose as substrate. In this study, a novel glucansucrase (GTFA) from Lactobacillus reuteri E81 was identified and heterologously expressed. Alignments of GTFA with other glucansucrases revealed its novelty and a putative 3D model structure was obtained. The biochemical properties of the truncated enzyme without the N-terminal variable region, GTFA-ΔN, was characterized. The Km and Vmax were found to be 7.5?mM and 1.49?IU/mg, respectively, and it showed optimum activities at pH 7 and at 50?°C. The GTFA-ΔN produced in vitro an α-glucan with (α1 → 3) and (α1 → 6) glycosidic linkages using sucrose as the substrate. Importantly, GTFA-ΔN synthesized DP = 9 oligosaccharides using sucrose and maltose as the donor and acceptor sugars, respectively, as detected by TLC, HPLC, LC-MS and NMR analysis.  相似文献   

6.
Kinetics Characterization of Taurocholic Transport in Lactobacillus reuteri   总被引:1,自引:0,他引:1  
Taurocholic acid transport in Lactobacillus reuteri CRL 1098 was determined. The bile acid is incorporated inside the cells by an active and saturable transport showing a typical kinetics of Michaelis-Menten with values of K m and V max of 0.35 mm and 20 mm, respectively. Received: 30 May 2000/Accepted: 5 July 2000  相似文献   

7.
Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with beta-(2-->1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>10(7)) with beta-(2-->1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.  相似文献   

8.
Characterization of reutericyclin produced by Lactobacillus reuteri LTH2584   总被引:1,自引:0,他引:1  
Lactobacillus reuteri LTH2584 exhibits antimicrobial activity that can be attributed neither to bacteriocins nor to the production of reuterin or organic acids. We have purified the active compound, named reutericyclin, to homogeneity and characterized its antimicrobial activity. Reutericyclin exhibited a broad inhibitory spectrum including Lactobacillus spp., Bacillus subtilis, B. cereus, Enterococcus faecalis, Staphylococcus aureus, and Listeria innocua. It did not affect the growth of gram-negative bacteria; however, the growth of lipopolysaccharide mutant strains of Escherichia coli was inhibited. Reutericyclin exhibited a bactericidal mode of action against Lactobacillus sanfranciscensis, Staphylococcus aureus, and B. subtilis and triggered the lysis of cells of L. sanfranciscensis in a dose-dependent manner. Germination of spores of B. subtilis was inhibited, but the spores remained unaffected under conditions that do not permit germination. The fatty acid supply of the growth media had a strong effect on reutericyclin production and its distribution between producer cells and the culture supernatant. Reutericyclin was purified from cell extracts and culture supernatant of L. reuteri LTH2584 cultures grown in mMRS by solvent extraction, gel filtration, RP-C(8) chromatography, and anion-exchange chromatography, followed by rechromatography by reversed-phase high-pressure liquid chromatography. Reutericyclin was characterized as a negatively charged, highly hydrophobic molecule with a molecular mass of 349 Da. Structural characterization (A. H?ltzel, M. G. G?nzle, G. J. Nicholson, W. P. Hammes, and G. Jung, Angew. Chem. Int. Ed. 39:2766-2768, 2000) revealed that reutericyclin is a novel tetramic acid derivative. The inhibitory activity of culture supernatant of L. reuteri LTH2584 corresponded to that of purified as well as synthetic reutericyclin.  相似文献   

9.
This study was conducted to evaluate the probiotic properties of Lactobacillus reuteri isolated from human infant feces (less than 3?months). Out of thirty-two representative L. reuteri strains isolated from the infant human feces, nine isolates (i.e. LR5, LR6, LR9, LR11, LR19, LR20, LR25, LR26 and LR34) showed survival in acid, bile and simulated stomach?Cduodenum passage conditions, indicating their high tolerance to gastric juice, duodenal juice and bile environments. The nine isolates did not show strong hydrophobic properties because the percentages of adhesion to the apolar solvent, n-hexadecane, did not exceed 40%, showing that their surfaces were rather hydrophilic. Functionality of these nine probiotic isolates was supported by their antagonistic activity and their ability to deconjugate bile salts. The safety of the nine indigenous L. reuteri isolates was supported by the absence of transferable antibiotic resistance determinants, DNase activity, gelatinase activity and hemolysis. The results obtained so far suggest that the nine strains are resistant to low pH, bile salts and duodenum juice, so they could survive when passing through the upper part of the gastrointestinal tract and fulfill their potential probiotic action in the host organism. According to these results, the L. reuteri strains isolated from human infant feces possess interesting probiotic properties that make them potentially good candidates for probiotics.  相似文献   

10.
Lactobacillus reuteri LTH2584 exhibits antimicrobial activity that can be attributed neither to bacteriocins nor to the production of reuterin or organic acids. We have purified the active compound, named reutericyclin, to homogeneity and characterized its antimicrobial activity. Reutericyclin exhibited a broad inhibitory spectrum including Lactobacillus spp., Bacillus subtilis, B. cereus, Enterococcus faecalis, Staphylococcus aureus, and Listeria innocua. It did not affect the growth of gram-negative bacteria; however, the growth of lipopolysaccharide mutant strains of Escherichia coli was inhibited. Reutericyclin exhibited a bactericidal mode of action against Lactobacillus sanfranciscensis, Staphylococcus aureus, and B. subtilis and triggered the lysis of cells of L. sanfranciscensis in a dose-dependent manner. Germination of spores of B. subtilis was inhibited, but the spores remained unaffected under conditions that do not permit germination. The fatty acid supply of the growth media had a strong effect on reutericyclin production and its distribution between producer cells and the culture supernatant. Reutericyclin was purified from cell extracts and culture supernatant of L. reuteri LTH2584 cultures grown in mMRS by solvent extraction, gel filtration, RP-C8 chromatography, and anion-exchange chromatography, followed by rechromatography by reversed-phase high-pressure liquid chromatography. Reutericyclin was characterized as a negatively charged, highly hydrophobic molecule with a molecular mass of 349 Da. Structural characterization (A. Höltzel, M. G. Gänzle, G. J. Nicholson, W. P. Hammes, and G. Jung, Angew. Chem. Int. Ed. 39:2766–2768, 2000) revealed that reutericyclin is a novel tetramic acid derivative. The inhibitory activity of culture supernatant of L. reuteri LTH2584 corresponded to that of purified as well as synthetic reutericyclin.  相似文献   

11.
A reuterin (3-hydroxypropinaldehyde, 3-HPA)-producing isolate from a human infant fecal sample was identified as Lactobacillus reuteri BPL-36 strain. The organism displayed a broad-spectrum antimicrobial activity. The gene (gdh) encoding a glycerol dehydratase subunit was detected by PCR, thus confirming its reuterin-producing ability. Reuterin concentration of 89.63?mM/mL was obtained in the MRS?Cglycerol medium after 16?h of incubation at 37?°C. The reuterin concentration required to inhibit the growth of Pseudomonas aeruginosa, Escherichia coli O157: H7, Salmonella typhi, Staphylococcus aureus, and Listeria monocytogenes was found to be 1.0, 2.0, 2.0, 4.0, and 10.0?AU/mL, respectively. Antimicrobial efficiency test using BPL-36 cell-free supernatant co-incubated along with different test pathogens was done. Viability of all the tested pathogens decreased with increasing contact time with the cell-free supernatant. S. typhi was observed to be the most susceptible among the tested organisms, and the number of viable cells hugely declined as the contact with cell-free supernatant continued, resulting in a reduction of 6 log cycles (100?% inhibition) of the cells after 4?h of treatment. Production of biogenic amines and degradation of mucin by the reuterin-producing BPL-36 strain were not detected.  相似文献   

12.
Glucansucrases are large extracellular transglycosidases secreted by lactic acid bacteria. Using sucrose as a substrate they synthesize high molecular mass α-glucans or, in the presence of suitable acceptor molecules, low molecular mass oligosaccharides. Although about 60 glucansucrases have been classified in glycoside hydrolase family GH70, no three-dimensional structure has been reported for any. With the aim of solving the first structure of a GH70 glucansucrase, purification and crystallization experiments were performed with a fully active, 117 kDa N-terminally truncated fragment of glucansucrase GTF180 from Lactobacillus reuteri 180 (residues 742–1772). Crystallization experiments yielded crystals that belong to two different triclinic crystal forms (space group P1) and one orthorhombic crystal form (space group P212121). Native data sets for both triclinic and the orthorhombic crystals were collected at 1.7 and 2.0 Å resolution, respectively. Enzyme activity assays, pH and temperature optima show comparable values for both the full-length and the N-terminally truncated GTF180.  相似文献   

13.
Plasmid analysis, plasmid curing, cloning, and hybridization experiments were used to study four Lactobacillus reuteri strains showing high resistance to erythromycin. Plasmid curing with acriflavine resulted in a loss of erythromycin resistance in a frequency of 1-10%. For three of the strains this was accompanied by a loss of a 6.9-MDa plasmid, which was shown to be identical for the different strains and designated pLUL631. The erythromycin (erm) gene was located on a 5.5-MDa plasmid in the fourth strain. A restriction map of pLUL631 was constructed and the location of the erm gene on the plasmid was identified by cloning in Escherichia coli. By using a Streptococcus lactis-E. coli shuttle vector, the erm gene was also transformed to S. lactis and expressed. The erm gene from L. reuteri was shown to be related to the erm gene from pIP501 (Streptococcus agalactiae) by DNA-DNA hybridization.  相似文献   

14.
Inulosucrases catalyze transfer of a fructose moiety from sucrose to a water molecule (hydrolysis) or to an acceptor molecule (transferase), yielding inulin. Bacterial inulin production is rare and a biochemical analysis of inulosucrase enzymes has not been reported. Here we report biochemical characteristics of a purified recombinant inulosucrase enzyme from Lactobacillus reuteri. It displayed Michaelis-Menten type of kinetics with substrate inhibition for the hydrolysis reaction. Kinetics of the transferase reaction is best described by the Hill equation, not reported before for these enzymes. A C-terminal deletion of 100 amino acids did not appear to affect enzyme activity or product formation. This truncated form of the enzyme was used for biochemical characterization.  相似文献   

15.
A novel esterase gene (estI) of Lactobacillus casei CL96 was localized on a 3.3-kb BamHI DNA fragment containing an open reading frame (ORF) of 1,800 bp. The ORF of estI was isolated by PCR and expressed in Escherichia coli, the methylotrophic bacterium Methylobacterium extorquens, and the methylotrophic yeast Pichia pastoris under the control of T7, methanol dehydrogenase (PmxaF), and alcohol oxidase (AOX1) promoters, respectively. The amino acid sequence of EstI indicated that the esterase is a novel member of the GHSMG family of lipolytic enzymes and that the enzyme contains a lipase-like catalytic triad, consisting of Ser325, Asp516, and His558. E. coli BL21(DE3)/pLysS containing estI expressed a novel 67.5-kDa protein corresponding to EstI in an N-terminal fusion with the S·tag peptide. The recombinant L. casei CL96 EstI protein was purified to electrophoretic homogeneity in a one-step affinity chromatography procedure on S-protein agarose. The optimum pH and temperature of the purified enzyme were 7.0 and 37°C, respectively. Among the pNP (p-nitrophenyl) esters tested, the most selective substrate was pNP-caprylate (C8), with Km and kcat values of 14 ± 1.08 μM and 1,245 ± 42.3 S−1, respectively.  相似文献   

16.
The bile salt hydrolase (BSH) of Lactobacillus reuteri CRL 1098 is a single, constitutive, intracellular enzyme which is only detectable in stationary phase cells. It has optimal activity at pH 4.5–5.5 and 37–45 °C. The enzyme (80 kDa apparent mass) has sulphydryl groups in the catalytic active site and hydrolyzes both glycine and taurine conjugated bile acids with higher affinity for glyco-conjugates.  相似文献   

17.
18.
本文探讨了罗氏乳杆菌DSM122460无细胞上清培养液(Cell-Free Supernatant,CFS)移除胆固醇的能力。采用邻苯二甲醛法测定DSM122460和对照菌株ST-III发酵过程中及其CFS对胆固醇的移除能力,并研究不同CFS浓度下的移除能力。并采用HPLC法测定CFS对照、热处理组和pH7.0组的胆盐水解酶活力,同时测定其移除胆固醇能力。结果显示,DSM122460不仅在发酵过程中具有较高的移除胆固醇能力,其CFS也表现出较高的移除能力,CFS中含有除胆盐水解酶以外的可移除胆固醇的蛋白类成分。这提示可能存在一种乳酸菌移除胆固醇的新机制。  相似文献   

19.
Probiotic bacteria encounter various stresses after ingestion by the host, including exposure to the low pH in the stomach and bile in the small intestine. The probiotic microorganism Lactobacillus reuteri ATCC 55730 has previously been shown to survive in the human small intestine. To address how L. reuteri can resist bile stress, we performed microarray experiments to determine gene expression changes that occur when the organism is exposed to physiological concentrations of bile. A wide variety of genes that displayed differential expression in the presence of bile indicated that the cells were dealing with several types of stress, including cell envelope stress, protein denaturation, and DNA damage. Mutations in three genes were found to decrease the strain's ability to survive bile exposure: lr1864, a Clp chaperone; lr0085, a gene of unknown function; and lr1516, a putative esterase. Mutations in two genes that form an operon, lr1584 (a multidrug resistance transporter in the major facilitator superfamily) and lr1582 (unknown function), were found to impair the strain's ability to restart growth in the presence of bile. This study provides insight into the possible mechanisms that L. reuteri ATCC 55730 may use to survive and grow in the presence of bile in the small intestine.  相似文献   

20.
Glucansucrase or glucosyltransferase (GTF) enzymes of lactic acid bacteria display high sequence similarity but catalyze synthesis of different alpha-glucans (e.g., dextran, mutan, alternan, and reuteran) from sucrose. The variations in glucosidic linkage specificity observed in products of different glucansucrase enzymes appear to be based on relatively small differences in amino acid sequences in their sugar-binding acceptor subsites. This notion was derived from mutagenesis of amino acids of GTFA (reuteransucrase) from Lactobacillus reuteri strain 121 putatively involved in acceptor substrate binding. A triple amino acid mutation (N1134S:N1135E:S1136V) in a region immediately next to the catalytic Asp1133 (putative transition state stabilizing residue) converted GTFA from a mainly alpha-(1-->4) ( approximately 45%, reuteran) to a mainly alpha-(1-->6) ( approximately 80%, dextran) synthesizing enzyme. The subsequent introduction of mutation P1026V:I1029V, involving two residues located in a region next to the catalytic Asp1024 (nucleophile), resulted in synthesis of an alpha-glucan containing only a very small percentage of alpha-(1-->4) glucosidic linkages ( approximately 5%) and a further increased percentage of alpha-(1-->6) glucosidic linkages ( approximately 85%). This changed glucosidic linkage specificity was also observed in the oligosaccharide products synthesized by the different mutant GTFA enzymes from (iso)maltose and sucrose. Amino acids crucial for glucosidic linkage type specificity of reuteransucrase have been identified in this report. The data show that a combination of mutations in different regions of GTF enzymes influences the nature of both the glucan and oligosaccharide products. The amino acids involved most likely contribute to sugar-binding acceptor subsites in glucansucrase enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号