首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Herein we report the synthesis and evaluation of a series of thiosemicarbazones as potential inhibitors of cysteine proteases relevant to parasitic diseases. Derivatives of thiosemicarbazone 1 were discovered to be potent inhibitors of cruzain and rhodesain, crucial proteases in the life cycles of Trypanosoma cruzi and T. brucei rhodesiense, the organisms causing Chagas' disease and sleeping sickness. However, the entire series had only modest potency against falcipain-2, an essential protease for Plasmodium falciparum, the organism causing malaria. Among the active inhibitors, several potently inhibited proliferation of cultures of T. brucei. However, only modest activity was observed in inhibition of proliferation of T. cruzi or P. falciparum.  相似文献   

2.
A multi-step cascade strategy using integrated ligand- and target-based virtual screening methods was developed to select a small number of compounds from the ZINC database to be evaluated for trypanocidal activity. Winnowing the database to 23 selected compounds, 12 non-covalent binding cruzain inhibitors with affinity values (K i) in the low micromolar range (3–60 µM) acting through a competitive inhibition mechanism were identified. This mechanism has been confirmed by determining the binding mode of the cruzain inhibitor Nequimed176 through X-ray crystallographic studies. Cruzain, a validated therapeutic target for new chemotherapy for Chagas disease, also shares high similarity with the mammalian homolog cathepsin L. Because increased activity of cathepsin L is related to invasive properties and has been linked to metastatic cancer cells, cruzain inhibitors from the same library were assayed against it. Affinity values were in a similar range (4–80 µM), yielding poor selectivity towards cruzain but raising the possibility of investigating such inhibitors for their effect on cell proliferation. In order to select the most promising enzyme inhibitors retaining trypanocidal activity for structure-activity relationship (SAR) studies, the most potent cruzain inhibitors were assayed against T. cruzi-infected cells. Two compounds were found to have trypanocidal activity. Using compound Nequimed42 as precursor, an SAR was established in which the 2-acetamidothiophene-3-carboxamide group was identified as essential for enzyme and parasite inhibition activities. The IC50 value for compound Nequimed42 acting against the trypomastigote form of the Tulahuen lacZ strain was found to be 10.6±0.1 µM, tenfold lower than that obtained for benznidazole, which was taken as positive control. In addition, by employing the strategy of molecular simplification, a smaller compound derived from Nequimed42 with a ligand efficiency (LE) of 0.33 kcal mol−1 atom−1 (compound Nequimed176) is highlighted as a novel non-peptidic, non-covalent cruzain inhibitor as a trypanocidal agent candidate for optimization.  相似文献   

3.
Trypanosoma cruzi, a protozoan parasite, is the causative agent of Chagas disease, a major cause of cardiovascular disease in many Latin American countries. There is an urgent need to develop an improved therapy due to the toxicity of existing drugs and emerging drug resistance. Cruzain, the primary cysteine protease of T. cruzi, is essential for the survival of the parasite in host cells and therefore is an important target for the development of inhibitors as potential therapeutics. A novel series of alpha-ketoamide-, alpha-ketoacid-, alpha-ketoester-, and aldehyde-based inhibitors of cruzain has been developed. The inhibitors were identified by screening protease targeted small molecule libraries and systematically optimizing the P1, P2, P3, and P1' residues using specific structure-guided methods. A total of 20 compounds displayed picomolar potency in in vitro assays and three inhibitors representing different alpha-keto-based inhibitor scaffolds demonstrated anti-trypanosomal activity in cell culture. A 2.3A crystallographic structure of cruzain bound with one of the alpha-ketoester analogs is also reported. The structure and kinetic assay data illustrate the covalent binding, reversible inhibition mechanism of the inhibitor. Information on the compounds reported here will be useful in the development of new lead compounds as potential therapeutic agents for the treatment of Chagas disease and as biological probes to study the role that cruzain plays in the pathology. This study also demonstrates the validity of structure-guided approaches to focused library design and lead compound optimization.  相似文献   

4.
A new family of potent N-alkoxyvinylsulfonamide inhibitors of cruzain have been developed. Inhibitor 13 has a second order inactivation rate constant of 6,480,000s(-1)M(-1) versus cruzain, and is also highly effective against Trypanosoma cruzi trypomastigotes in a tissue culture assay.  相似文献   

5.
Hologram quantitative structure-activity relationships (HQSAR) were applied to a data set of 41 cruzain inhibitors. The best HQSAR model (Q(2)=0.77; R(2)=0.90) employing Surflex-Sim, as training and test sets generator, was obtained using atoms, bonds, and connections as fragment distinctions and 4-7 as fragment size. This model was then used to predict the potencies of 12 test set compounds, giving satisfactory predictive R(2) value of 0.88. The contribution maps obtained from the best HQSAR model are in agreement with the biological activities of the study compounds. The Trypanosoma cruzi cruzain shares high similarity with the mammalian homolog cathepsin L. The selectivity toward cruzain was checked by a database of 123 compounds, which corresponds to the 41 cruzain inhibitors used in the HQSAR model development plus 82 cathepsin L inhibitors. We screened these compounds by ROCS (Rapid Overlay of Chemical Structures), a Gaussian-shape volume overlap filter that can rapidly identify shapes that match the query molecule. Remarkably, ROCS was able to rank the first 37 hits as being only cruzain inhibitors. In addition, the area under the curve (AUC) obtained with ROCS was 0.96, indicating that the method was very efficient to distinguishing between cruzain and cathepsin L inhibitors.  相似文献   

6.
Trypanosoma cruzi chagasin belongs to a recently discovered family of cysteine protease inhibitors found in lower eukaryotes and prokaryotes but not in mammals. Chagasin binds tightly to cruzain, the major lysosomal T. cruzi cysteine protease, involved with infectivity and survival of the parasite in mammalian host cells. In the scope of a project to characterize proteins diferentially expressed during T. cruzi metacyclogenesis, we have determined the crystal structure of chagasin, which is now the first X-ray structure of a chagasin-like cysteine protease inhibitor to be reported. The structure was solved by the SIRAS method and refined at 1.7A resolution and a comparison with the two NMR structures available revealed some differences in the loops involved in binding to cysteine proteases. The highly flexible loop 4 could be entirely modeled and residues 29-33 from loop 2 form a 3(10)-helix structure that may be important to stabilize the loop conformation. Chagasin crystal structure was docked to the highest resolution structure available of cruzain and a model of chagasin-cruzain interaction was analyzed. The knowledge of the chagasin crystal structure may contribute to the elucidation of the molecular mechanism involved in the inhibition of cruzain and other T. cruzi cysteine proteases.  相似文献   

7.
Trypanosoma cruzi is the causative agent of Chagas' disease. Novel chemotherapy with the drug K11777 targets the major cysteine protease cruzain and disrupts amastigote intracellular development. Nevertheless, the biological role of the protease in infection and pathogenesis remains unclear as cruzain gene knockout failed due to genetic redundancy. A role for the T. cruzi cysteine protease cruzain in immune evasion was elucidated in a comparative study of parental wild type- and cruzain-deficient parasites. Wild type T. cruzi did not activate host macrophages during early infection (<60 min) and no increase in ~P iκB was detected. The signaling factor NF-κB P65 colocalized with cruzain on the cell surface of intracellular wild type parasites, and was proteolytically cleaved. No significant IL-12 expression occurred in macrophages infected with wild type T. cruzi and treated with LPS and BFA, confirming impairment of macrophage activation pathways. In contrast, cruzain-deficient parasites induced macrophage activation, detectable iκB phosphorylation, and nuclear NF-κB P65 localization. These parasites were unable to develop intracellularly and survive within macrophages. IL 12 expression levels in macrophages infected with cruzain-deficient T. cruzi were comparable to LPS activated controls. Thus cruzain hinders macrophage activation during the early (<60 min) stages of infection, by interruption of the NF-κB P65 mediated signaling pathway. These early events allow T. cruzi survival and replication, and may lead to the spread of infection in acute Chagas' disease.  相似文献   

8.
9.
The importance of cysteine proteases in parasites, compounded with the lack of redundancy compared to their mammalian hosts makes proteases attractive targets for the development of new therapeutic agents. The binding mode of K11002 to cruzain, the major cysteine protease of Trypanosoma cruzi was used in the design of conformationally constrained inhibitors. Vinyl sulfone-containing macrocycles were synthesized via olefin ring-closing metathesis and evaluated against cruzain and the closely related cysteine protease, rhodesain.  相似文献   

10.
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.  相似文献   

11.
The structure of cruzain, an essential protease from the parasite Trypanosoma cruzi, was determined by X-ray crystallography bound to two different covalent inhibitors. The cruzain S2 specificity pocket is able to productively bind both arginine and phenylalanine residues. The structures of cruzain bound to benzoyl-Arg-Ala-fluoromethyl ketone and benzoyl-Tyr-Ala-fluoromethyl ketone at 2.2 and 2.1 A, respectively, show a pH-dependent specificity switch. Glu 205 adjusts to restructure the S2 specificity pocket, conferring right binding to both hydrophobic and basic residues. Kinetic analysis of activated peptide substrates shows that substrates placing hydrophobic residues in the specificity pocket are cleaved at a broader pH range than hydrophilic substrates. These results demonstrate how cruzain binds both basic and hydrophobic residues and could be important for in vivo regulation of cruzain activity.  相似文献   

12.
A novel series of thiosemicarbazone and aminoacyl-thiazolidones derivatives were synthesized. Their structure suggests that these compounds could have anti-Trypanosoma cruzi activity. Biological evaluation indicates that some of these compounds are able to inhibit the growth of T. cruzi in concentrations non-cytotoxic to mammalian cells. Docking studies were carried out in order to investigate the binding pattern of these compounds for the T. cruzi cruzain (TCC) protein, and these showed a significant correlation with experimental data.  相似文献   

13.
A library of 121 pseudopeptides was designed to develop reversible inhibitors of trypanosomal enzymes (cruzain from Trypanosoma cruzi and congopain from Trypanosoma congolense). The peptides share the framework: Cha-X1-X2-Pro (Cha=cyclohexyl-alanine, X1 and X2 were phenylalanyl analogs), based on a previous report [Lecaille, F., Authié, E., Moreau, T., Serveau, C., Gauthier, F. and Lalmanach, G. (2001) Eur. J. Biochem. 268, 2733-2741]. Five peptides containing a nitro-substituted aromatic residue (Tyr/Phe) and one a 4-chloro-phenylalanine at the X1 position, and 3-(2-naphthyl)-alanine, homocyclohexylalanine or 3-nitro-tyrosine (3-NO(2)-Tyr) at the X2 position, were selected. They inhibited congopain more effectively than cruzain, except Cha-4-NO(2)-Phe-3-NO(2)-Tyr-Pro which bound the two parasitic enzymes similarly. Among this series, Cha-3-NO(2)-Tyr-HoCha-Pro and Cha-4-NO(2)-Phe-3-NO(2)-Tyr-Pro are the most selective for congopain relative to host cathepsins. No hydrolysis occurred upon prolonged incubation time with purified enzymes. In addition introduction of non-proteogenic residues in the peptidyl backbone greatly enhanced resistance to proteolysis by mammalian sera.  相似文献   

14.
A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A K i value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 μM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds.  相似文献   

15.
A series of sixteen benzoylthioureas derivatives were initially evaluated in vitro against the epimastigote form of Trypanosoma cruzi. All of the tested compounds inhibited the growth of this form of the parasite, and due to the promising anti-epimastigote activity from three of these compounds, they were also assayed against the trypomastigote and amastigote forms. ADMET-Tox in silico predictions and molecular docking studies with two main enzymatic targets (cruzain and CYP-51) were performed for the three compounds with the highest activity. The docking studies showed that these compounds can interact with the active site of cruzain by hydrogen bonds and can be coordinated with Fe-heme through the carbonyl oxygen atom of the CYP51. These findings can be considered an important starting point for the proposal of the benzoylthioureas as potent, selective, and multi-target antitrypanosomal agents.  相似文献   

16.
This article describes the synthesis and inhibitory activities of a series of new 3-piperonylcoumarins, designed as inhibitors of glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) from Trypanosoma cruzi. The design was based on the structures of previously identified natural products hits. The most active synthesized derivatives contain heterocyclic rings at position 6. SAR studies, performed by electronic indices methodology (EIM), clustered the molecules in different groups due to the chemical substitutions regarding the biological activity. Molecular modeling studies by docking suggested a different binding mode for the most active derivatives, when compared to natural hit chalepin. Moreover, the coumarin ring seems to act only as a spacer group.  相似文献   

17.
The physiological significance of the squamous cell carcinoma antigens 1 (SCCA1) and SCCA2, members of the ovalbumin serpin family, remains unresolved. In this study, we examined whether SCCA1 or SCCA2 inhibits protozoa- or helminth-derived cysteine proteases. SCCA1, but not SCCA2, potently inhibited the cysteine protease activities of CPB2.8 from Leishmania mexicana, cruzain from Trypanosoma cruzi, rhodesain from Trypanosoma brucei rhodesience, and cathepsin L2 from Fasciola hepatica. The inhibitory activities of SCCA1 were due to its resistance to cleavage by the cysteine proteases. The findings indicate that induction of cysteine protease inhibitors might be a novel defense mechanism against parasite development.  相似文献   

18.
19.
BACKGROUND: Cysteine proteases of the papain superfamily are present in nearly all groups of eukaryotes and play vital roles in a wide range of biological processes and diseases, including antigen and hormone processing, bacterial infection, arthritis, osteoporosis, Alzheimer's disease and cancer-cell invasion. Because they are critical to the life-cycle progression of many pathogenic protozoa, they represent potential targets for selective inhibitors. Chagas' disease, the leading cause of death due to heart disease in Latin American countries, is transmitted by Trypanosoma cruzi. Cruzain is the major cysteine protease of T cruzi and has been the target of extensive structure-based drug design. RESULTS: High-resolution crystal structures of cruzain bound to a series of potent phenyl-containing vinyl-sulfone, sulfonate and sulfonamide inhibitors have been determined. The structures show a consistent mode of interaction for this family of inhibitors based on a covalent Michael addition formed at the enzyme's active-site cysteine, hydrophobic interactions in the S2 substrate-binding pocket and a strong constellation of hydrogen bonding in the S1' region. CONCLUSIONS: The series of vinyl-sulfone-based inhibitors examined in complex with cruzain was designed to probe recognition and binding potential of an aromatic-rich region of the enzyme. Analysis of the interactions formed shows that aromatic interactions play a less significant role, whereas the strength and importance of hydrogen bonding in the conformation adopted by the inhibitor upon binding to the enzyme was highlighted. A derivative of one inhibitor examined is currently under development as a therapeutic agent against Chagas' disease.  相似文献   

20.
The protozoan Trypanosoma cruzi, the causative agent of Chagas’ disease, can infect the heart, causing cardiac arrest frequently followed by death. To treat this disease, a potential molecular drug target is T. cruzi trans-sialidase (TcTS). However, inhibitors found to date are not strong enough to serve as a lead scaffold; most inhibitors reported thus far are derivatives of the substrate sialic acid or a transition state analogue known as 2,3-dehydro-3-deoxy-N-acetylneuraminic acid (DANA) with an IC50 value of more than hundreds of micromolar. Since natural products are highly stereodiversified and often provide highly specific biological activity, we screened a natural product library for inhibitors of TcTS and identified promising flavonoid and anthraquinone derivatives. A structure–activity relationship (SAR) analysis of the flavonoids revealed that apigenin had the minimal and sufficient structure for inhibition. Intriguingly, the compound has been reported to possess trypanocidal activity. An SAR analysis of anthraquinones showed that 6-chloro-9,10-dihydro-4,5,7-trihydroxy-9,10-dioxo-2-anthracenecarboxylic acid had the strongest inhibitory activity ever found against TcTS. Moreover, its inhibitory activity appeared to be specific to TcTS. These compounds may serve as potent lead chemotherapeutic scaffolds against Chagas’ disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号