首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
With the aim of constructing a physical map of sorghum, we developed a rapid, high throughput approach for isolating BAC DNA suitable for restriction endonuclease digestion fingerprinting, PCR- based STS-content mapping, and BAC-end sequencing. The system utilizes a programmable 96 channel liquid handling system and associated accessories that permit bacterial cultivation and DNA isolation in 96-well plate format. This protocol details culture conditions that optimize bacterial growth in deep-well plates and criteria for BAC DNA isolation to obtain high yields of quality BAC DNA. The system is robust, accurate, and relatively cost-effective. The BAC DNA isolation system has been tested during efforts to construct a physical map of sorghum.  相似文献   

3.
Effects of Fe-EDDHA (Sequestrene 138), Fe-polyflavonoid (Rayplex), and an experimental iron lignosulfonate on dry matter yields, Fe content, and plant chlorosis of grain sorghum were studied under controlled conditions, using a normal and an Fe-deficient soil (DTPA extract). Application rates of 20, 40, and 80 ppm Fe were employed. Dry matter yields increased due to Fe applications. The lignosulfonate (Fe-LS) produced maximum dry matter yields followed by Fe-EDDHA and the polyflavonoid (Fe-PF) material. At the 80 ppm rate Fe-EDDHA and Fe-PF produced moderate and slight toxic effects, respectively. No toxic effect was noted with the Fe-LS material. Fe-EDDHA was found to be the most effective for correcting iron chlorosis, while the other two sources were similar in this respect. Except for the Fe-LS applied to the normal soil, all other treatments increased Fe content of plant shoots. In the Fe-deficient soil, Fe application lowered the Ca, Mg, Zn, and Mn concentrations in the plants. In the case of the normal soil, concentrations of these elements increased at the 20 ppm rate and underwent no further changes with higher rates. Treatments did not influence K and P concentrations of plants.Additional index words: Micronutrients, Iron compounds.  相似文献   

4.
5.
Drought is a major abiotic stress factor limiting crop production. Identification of genetic factors involved in plant responses to drought stress will provide a solid foundation to improve drought resistance. Sorghum is well adapted to hot dry environments and regarded as a model for studying drought resistance among the grasses. Significant progress in genome mapping of this crop has also been made. In sorghum, rapid premature leaf death generally occurs when water is limited during the grain filling period. Premature leaf senescence, in turn, leads to charcoal rot, stalk lodging, and significant yield loss. More than 80% of commercial sorghum hybrids in the United States are grown under non-irrigated conditions and although most of them have pre-flowering drought resistance, many do not have any significant post-flowering drought resistance. Stay-green is one form of drought resistance mechanism, which gives sorghum resistance to premature senescence under soil moisture stress during the post-flowering period. Quantitative trait locus (QTL) studies with recombinant inbred lines (RILs) and near-isogenic lines (NILs) identified several genomic regions associated with resistance to pre-flowering and post-flowering drought stress. We have identified four genomic regions associated with the stay-green trait using a RIL population developed from B35 × Tx7000. These four major stay-green QTLs were consistently identified in all field trials and accounted for 53.5% of the phenotypic variance. We review the progress in mapping stay-green QTLs as a component of drought resistance in sorghum. The molecular genetic dissection of the QTLs affecting stay-green will provide further opportunities to elucidate the underlying physiological mechanisms involved in drought resistance in sorghum and other grasses.  相似文献   

6.
Sorghum midge, Contarinia sorghicola Coq. (Diptera: Cecidomyiidae) is the most destructive pest of grain sorghum, and host-plant resistance is an effective method of controlling this insect. We studied the antixenosis component of resistance to sorghum midge using multi-, double- and no-choice cage tests, and under multi-choice field conditions to quantify and understand the nature of antixenosis component of resistance to this insect in Sorghum bicolor (L.) Moench. Midge response towards sorghum panicles was influenced by panicle size and cage type used to study the orientation behaviour. Maximum number of midges were recorded at 30 and 60 min after initiating the experiment. Antixenosis shown by C. sorghicola under multi-choice field conditions to ICSV 197 and TAM 2566 was not confirmed under cage tests, while DJ 6514, AF 28 and IS 3461 were non-preferred both under field and cage conditions. Midge-resistant female parents (PM 7061 and PM 7068) were less preferred than the midge susceptible (ICSA 42 and 296A) female parents. Male-sterility did not influence host finding and acceptance by the midge females, although in one out of two tests, the maintainer lines (B-lines) were preferred over the male-sterile lines (A-lines).  相似文献   

7.
Drought resistance is of enormous importance in crop production. The identification of genetic factors involved in plant response to drought stress provides a strong foundation for improving drought tolerance. Stay-green is a drought resistance trait in sorghum (Sorghum bicolor L. Moench) that gives plants resistance to premature senescence under severe soil moisture stress during the post-flowering stage. The objective of this study was to map quantitative trait loci (QTLs) that control the stay-green and chlorophyll content in sorghum. By using a restriction fragment length polymorphism (RFLP) map, developed from a recombinant inbred line (RIL) population, we identified four stay-green QTLs, located on three linkage groups. The QTLs (Stg1 and Stg2) are on linkage group A, with the other two, Stg3 and Stg4, on linkage groups D and J, respectively. Two stay-green QTLs, Stg1 and Stg2, explaining 13-20% and 20-30% of the phenotypic variability, respectively, were consistently identified in all trials at different locations in two years. Three QTLs for chlorophyll content (Chl1, Chl2, and Chl3), explaining 25-30% of the phenotypic variability were also identified under post-flowering drought stress. All coincided with the three stay-green QTL regions (Stg1, Stg2, and Stg3) accounting for 46% of the phenotypic variation. The Stg1 and Stg2 regions also contain the genes for key photosynthetic enzymes, heat shock proteins, and an abscisic acid (ABA) responsive gene. Such spatial arrangement shows that linkage group A is important for drought- and heat-stress tolerance and yield production in sorghum. High-resolution mapping and cloning of the consistent stay-green QTLs may help to develop drought-resistant hybrids and to understand the mechanism of drought-induced senescence in plants.  相似文献   

8.
Changes in plant architecture, specifically conversion to compact canopy for cereal crops, have resulted in significant increases in grain yield for wheat (Triticum aestivum) and rice (Oryza sativa). For sorghum (Sorghum bicolor L. Moench.) a versatile crop with an open canopy, plant architecture is an important feature that merits strong consideration for modification. Here, we report the genetic, developmental, and physiological characterization of a sorghum genetic stock, KFS2061, a stable mutant (in the Western Black Hull Kafir background) which exhibit short and erect leaves resulting in compact plant architecture. Genetic study of an F2 population derived from the cross of KFS2061 to BTx623 showed that the short leaf is recessive and appeared to be controlled by a single gene. The expression of the short leaf trait commenced with the 3rd leaf and is propagated through the entire leaf hierarchy of the canopy. The short leaf mutant exhibited consistent steep leaf angle, 43° (with the main culm as reference), and greener leaves than wild type. Biochemical analyses indicated significantly higher chlorophyll and cellulose content per leaf area in the mutant than wild type. Histological studies revealed reduction in cell length along the longitudinal axis and enlargement of bulliform cells in the adaxial surface of the mutant leaf. Further evaluation of agronomic traits indicated that this mutation could increase harvest index. This study provides information on a short leaf genetic stock that could serve as a vital resource in understanding how to manipulate plant canopy architecture of sorghum.  相似文献   

9.
Xue  Z. C.  Li  J. H.  Li  D. S.  Li  S. Z.  Jiang  C. D.  Liu  L. A.  Wang  S. Y.  Kang  W. J. 《Photosynthetica》2018,56(4):1422-1428
Photosynthetica - A hydroponic experiment was conducted to investigate bioaccumulation and photosynthetic activity response to Cd in sweet sorghum seedlings. The seedlings were treated with 0, 50,...  相似文献   

10.
Drought is a major constraint in sorghum production worldwide. Drought-stress in sorghum has been characterized at both pre-flowering and post-flowering stages resulting in a drastic reduction in grain yield. In the case of post-flowering drought stress, lodging further aggravates the problem resulting in total loss of crop yield in mechanized agriculture. The present study was conducted to identify quantitative trait loci (QTLs) controlling post-flowering drought tolerance (stay green), pre-flowering drought tolerance and lodging tolerance in sorghum using an F7 recombinant inbred line (RIL) population derived from the cross SC56×Tx7000. The RIL lines, along with parents, were evaluated for the above traits in multiple environments. With the help of a restriction fragment length polymorphism (RFLP) map, which spans 1,355 cM and consists of 144 loci, nine QTLs, located over seven linkage groups were detected for stay green in several environments using the method of composite interval mapping. Comparison of the QTL locations with the published results indicated that three QTLs located on linkage groups A, G and J were consistent. This is considered significant since the stay green line SC56 used in our investigation is from a different source compared to B35 that was used in all the earlier investigations. Comparative mapping has shown that two stay green QTLs identified in this study corresponded to stay green QTL regions in maize. These genomic regions were also reported to be congruent with other drought-related agronomic and physiological traits in maize and rice, suggesting that these syntenic regions might be hosting a cluster of genes with pleiotropic effects implicated in several drought tolerance mechanisms in these grass species. In addition, three and four major QTLs responsible for lodging tolerance and pre-flowering drought tolerance, respectively, were detected. This investigation clearly revealed the important and consistent stay green QTLs in a different stay green source that can logically be targeted for positional cloning. The identification of QTLs and markers for pre-flowering drought tolerance and lodging tolerance will help plant breeders in manipulating and pyramiding those traits along with stay green to improve drought tolerance in sorghum. Received: 2 June 2000 / Accepted: 15 November 2000  相似文献   

11.
Two sets of alcohol dehydrogenase (ADH) bands are regularly observed in grain sorghum (Sorghum bicolor): set I is a permanent triplet; set II is variable, as either two or three bands. A faint set III is detected only when extracts from seeds subjected to anerobiosis are run in neutralpH gels. Dissociation-reassociation experiments reveal that the central band of the set I triplet is a heterodimer of the other two. Full-sib progeny analysis from selfed plants shows that the set II bands are doublets, with heterozygotes having only three apparent bands instead of four because of the similar mobilities of the fast-migrating isozyme specified by the slow allele and the slow isozyme specified by the fast allele. We propose a three-locus model as the best explanation of these patterns. Set I consists of the products of two loci and their intergenic heterodimer. Set III is specified by a third locus. Set II isozymes are the intergenic heterodimers of the two set I loci and the set III locus. This explanation is similar to that of Schwartz and Freeling for maize but suggests that the evolution ofSorghum includes a gene duplication of the homologue of theAdh-1 locus inZea. Supported by USDA Grant 59-2063-01522 to NCE and KWF.  相似文献   

12.
Chromosome pairing and meiosis were studied in cross-fertile and cross-sterile sorghum lines and F1 hybrids between one cross-sterile and several fertile lines. The cross-fertile parents exhibited regular meiosis, but the cross-sterile ones and the hybrids had abnomalities indicative of non-homologies, deficiencies and/or duplications. The significance of the chromosomal differentiation in cross-sterile sorghums in relation to the origin of cross-sterility and apomixis was discussed.  相似文献   

13.

Background

Sorghum (Sorghum bicolor) is globally produced as a source of food, feed, fiber and fuel. Grain and sweet sorghums differ in a number of important traits, including stem sugar and juice accumulation, plant height as well as grain and biomass production. The first whole genome sequence of a grain sorghum is available, but additional genome sequences are required to study genome-wide and intraspecific variation for dissecting the genetic basis of these important traits and for tailor-designed breeding of this important C4 crop.

Results

We resequenced two sweet and one grain sorghum inbred lines, and identified a set of nearly 1,500 genes differentiating sweet and grain sorghum. These genes fall into ten major metabolic pathways involved in sugar and starch metabolisms, lignin and coumarin biosynthesis, nucleic acid metabolism, stress responses and DNA damage repair. In addition, we uncovered 1,057,018 SNPs, 99,948 indels of 1 to 10 bp in length and 16,487 presence/absence variations as well as 17,111 copy number variations. The majority of the large-effect SNPs, indels and presence/absence variations resided in the genes containing leucine rich repeats, PPR repeats and disease resistance R genes possessing diverse biological functions or under diversifying selection, but were absent in genes that are essential for life.

Conclusions

This is a first report of the identification of genome-wide patterns of genetic variation in sorghum. High-density SNP and indel markers reported here will be a valuable resource for future gene-phenotype studies and the molecular breeding of this important crop and related species.  相似文献   

14.
Summary This report reviews the contributions to the improvement of sorghum (Sorghum bicolor (L.) Moench) through traditional approaches with emphasis on the application of biotechnological methods. Strategies include breeding for higher yield, improved grain quality, and biotic and abiotic stress tolerance. Hybrid development and polyploidy breeding are also discussed. Plant breeders, working in concert with biotechnologists, have developed new powerful tools for plant genetic manipulation and genotype evaluation that will significantly improve the efficiency of plant breeding. Improving sorghum through biotechnology is the latest in a long series of technologies that have been applied to this crop. Five basic tools of technology have been developed for sorghum improvement: (1) in vitro protocols for efficient plant regeneration; (2) molecular markers; (3) gene identification and cloning; (4) genetic engineering and gene transfer technology to integrate desirable traits into the sorghum genome; and (5) genomics and germplasm databases. Reports on studies involving the problems, progress, and prospects for utilizing the biotechnological methods for sorghum improvement are discussed.  相似文献   

15.
16.
17.
To determine protein differences of grain sorghum disomics and trisomics, we analyzed leaf extracts from six trisomics and a disomic control by disc gel, gel isoelectric focusing, and SDS gel electrophoresis. Based on the number and position of protein bands revealed by Commassie blue staining, the disomic control could be differentiated from the trisomics, and trisomics could be shown to differ among themselves in most cases. SDS gels revealed the most protein bands, followed by isoelectric focusing and disc gel. However, disc gel electrophoresis was the simplest technique of the three and was just as effective in identifying trisomics and differentiating trisomics from the disomic control.Contribution 1596-j, Department of Agronomy, and 182-j, Department of Biochemistry, Kansas State University, Manhattan, Kansas.  相似文献   

18.
Since the Bombyx mori genome sequence was published, conserved synteny between B. mori and some other lepidopteran species has been revealed by either FISH (fluorescence in situ hybridization) with BAC (bacterial artificial chromosome) probes or linkage analysis. However, no species belonging to the Noctuidae, the largest lepidopteran family which includes serious polyphagous pests, has been analyzed so far with respect to genome-wide conserved synteny and gene order. For that purpose, we selected the noctuid species Helicoverpa armigera and Mamestra brassicae, both with n = 31 chromosomes. Gene-defined fosmid clones from M. brassicae and BAC clones from a closely related species of H. armigera, Heliothis virescens, were used for a FISH analysis on pachytene chromosomes. We recognized all H. armigera chromosomes from specific cross-hybridization signals of 146 BAC probes. With 100 fosmid clones we identified and characterized all 31 bivalents of M. brassicae. Synteny and gene order were well conserved between the two noctuid species. The comparison with the model species B. mori (n = 28) showed the same phenomenon for 25 of the 28 chromosomes. Three chromosomes (#11, #23 and #24) had two counterparts each in H. armigera and M. brassicae. Since n = 31 is the modal chromosome number in Lepidoptera, the noctuid chromosomes probably represent an ancestral genome organization of Lepidoptera. This is the first identification of a full karyotype in Lepidoptera by means of BAC cross-hybridization between species. The technique shows the potential to expand the range of analyzed species efficiently.  相似文献   

19.
Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.  相似文献   

20.
Sorghum shoot fly, Atherigona soccata is an important pest of sorghum, and host plant resistance is one of the important components for minimizing the losses due to this pest. Therefore, we evaluated a diverse array of sorghum genotypes to identify physico‐chemical characteristics conferring resistance to A. soccata. Susceptibility to shoot fly was associated with high amounts of soluble sugars, fats, leaf surface wetness and seedling vigour; while leaf glossiness, plumule and leaf sheath pigmentation, trichome density and high tannin, Mg and Zn showed resistance to shoot fly. Stepwise regression indicated that Mg, Zn, soluble sugars, tannins, fats, leaf glossiness, leaf sheath and plumule pigmentation and trichome density explained 99.8% of the variation in shoot fly damage. Path coefficient analysis suggested that leaf glossiness, trichome density, Mg and fat content and plant plumule pigmentation can be used as markers traits to select for shoot fly resistance in sorghum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号