首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Fourteen proteins of potential diagnostic value for bovine paratuberculosis were identified in the culture filtrate of Mycobacterium paratuberculosis JTC303 by immunoblot and mass spectrometry. The goals of the present study were to express these 14 ORFs in Escherichia coli and evaluate their antigenicity. All 14 proteins were expressed in E. coli BL21(DE3) after transformation with the pET-22b(+) vector. Yields of insoluble proteins were higher than those of the soluble proteins. Polyclonal rabbit antibodies directed against culture filtrate of JTC303 strain confirmed that five of the expressed and purified proteins are culture filtrate components: ModD, Antigen 85C, PepA, MAP1693c, and MAP2168c. Evaluation of ModD as an ELISA solid-phase antigen on a set of bovine sera from well-characterized paratuberculosis cases and infection-free controls revealed that there was strong serum antibody reactivity to rModD in many infected cattle. However, the overall rModD ELISA sensitivity and specificity for bovine paratuberculosis was not greater than those of ELISAs using crude antigens such as cellular extract or culture filtrate for plate coating, as judged by area under the curve (AUC) of Receiver-operating curve (ROC) analysis. However, an ELISA using natural ModD as the solid-phase antigen had a higher sensitivity and AUC than did rModD suggesting diminution of antigenicity in rModD. Taken together, our results showed that the natural forms of the identified proteins may be useful for diagnosis of bovine paratuberculosis.  相似文献   

4.
The first structure for a member of the DUF3349 (PF11829) family of proteins, Rv0543c from Mycobacterium tuberculosis, has been determined using NMR-based methods and some of its biophysical properties characterized. Rv0543c is a 100 residue, 11.3 kDa protein that both size exclusion chromatography and NMR spectroscopy show to be a monomer in solution. The structure of the protein consists of a bundle of five α-helices, α1 (M1 – Y16), α2 (P21 – C33), α3 (S37 – G52), α4 (G58 – H65) and α5 (S72 – G87), held together by a largely conserved group of hydrophobic amino acid side chains. Heteronuclear steady-state {1H}–15N NOE, T1, and T2 values are similar through-out the sequence indicating that the backbones of the five helices are in a single motional regime. The thermal stability of Rv0543c, characterized by circular dichroism spectroscopy, indicates that Rv0543c irreversibly unfolds upon heating with an estimated melting temperature of 62.5 °C. While the biological function of Rv0543c is still unknown, the presence of DUF3349 proteins predominately in Mycobacterium and Rhodococcus bacterial species suggests that Rv0543 may have a biological function unique to these bacteria, and consequently, may prove to be an attractive drug target to combat tuberculosis.  相似文献   

5.
Mice immunized by the intranasal route with dendritic cells harvested from the lungs and then pulsed with Ag85 (LDC-Ag85) were able to prime naive CD4(+) T cells in vivo. As a result splenic CD4(+) T cells from these immunized mice were able to produce IFNgamma following culture with Mycobacterium tuberculosis-infected antigen presenting cells. Hematoxylin and eosin stained lung sections from LDC-Ag85 immunized mice after they had been exposed to aerosol challenge with M. tuberculosis showed a florid infiltration of macrophages and lymphocytes into granulomas and parenchymal tissues when compared to lung sections from control groups implanted with dendritic cells pulsed with ovalbumin. In addition, using immunohistochemistry, these tissues appeared to have more CD4(+) and CD8(+) cells than the control groups. This was confirmed by flow cytometric analysis which showed that lung cell digests contained increased numbers of CD4 and CD8 interferongamma secreting cells. Despite this increase however, no evidence was seen that indicated that the LDC-Ag85 immunized mice were more resistant to M. tuberculosis infection than mice immunized with LDC pulsed with an irrelevant protein. Instead, the potent inflammatory response in the LDC-Ag85 resulted in serious consolidation of the lung tissue.  相似文献   

6.
Culture filtrate from Mycobacterium tuberculosis contains molecules which can promote protective immunity to tuberculosis in animal models. Six novel proteins in the region of 17-29 kDa were purified and investigated for their immunological relevance in M. tuberculosis-infected mice, guinea pigs and tuberculosis patients. The proteins CFP17, CFP21, CFP25 and CFP29 were all identified as strong interferon-gamma inducers in M. tuberculosis-infected mice and in tuberculosis patients. The CFP21 protein is encoded in the genomic region RD-2 which is deleted from a number of BCG strains and the diagnostic potential of this antigen was evaluated.  相似文献   

7.
HBHA is a mycobacterial cell surface protein that mediates adhesion to epithelial cells and that has been implicated in the dissemination of Mycobacterium tuberculosis (Mtb) from the site of primary infection. In this work, we demonstrate that HBHA is able to bind G-actin whereas its shorter form, deprived of the lysine-rich C-terminal region (HBHAΔC), does not bind. Consistently, interaction of actin with HBHA is competitive with heparin binding. Notably, we also observe that HBHA, but not HBHAΔC, clearly hampers G-actin polymerisation into F-actin filaments. Since Mtb escapes from the phagosome into the cytosol of host cells, where it can persist and replicate, HBHA is properly localised on the bacterial surface to regulate the dynamic process of cytoskeleton formation driven by actin polymerisation and depolymerisation.  相似文献   

8.
Nuclear magnetic resonance spectroscopy, fast-atom bombardment mass spectrometry as well as various chemical degradations and chromatographic techniques were used to re-examine the structure of a highly immunoreactive glycolipid previously described in Mycobacterium tuberculosis (strain Canetti) as a 2,3-diacyl trehalose 2'-sulfate (labelled SL-IV). Ion exchange chromatography allowed the recognition of a neutral and an acidic glycolipid, indistinguishable on conventional silica gel. The neutral glycolipid was shown to be serologically identical to SL-IV and its structure was established as 2,3-diacyl trehalose. It corresponded to the non-chemically defined highly observed immunoreactive lipid previously recognized by others in M. tuberculosis (H37Rv).  相似文献   

9.
Binding and activation of human plasminogen (Plg) to generate the proteolytic enzyme plasmin (Plm) have been associated with the invasive potential of certain bacteria. In this work, proteomic analysis together with ligand blotting assays identified several major Plg-binding spots in Mycobacterium tuberculosis soluble extracts (SEs) and culture filtrate proteins. The identity of 15 different proteins was deduced by N-terminal and/or MS and corresponded to DnaK, GroES, GlnA1, Ag85 complex, Mpt51, Mpt64, PrcB, MetK, SahH, Lpd, Icl, Fba, and EF-Tu. Binding of Plg to recombinant M. tuberculosis DnaK, GlnA1, and Ag85B was further confirmed by ELISA and ligand blotting assays. The binding was inhibited by epsilon-aminocaproic acid, indicating that the interaction involved lysine residues. Plg bound to recombinant mycobacterial proteins was activated to Plm by tissue-type Plg activator. In contrast with recombinant proteins, M. tuberculosis SE enhanced several times the Plg activation mediated by the activator. Interestingly, GlnA1 was able to bind the extracellular matrix (ECM) protein fibronectin. Together these results show that M. tuberculosis posses several Plg receptors suggesting that bound Plg to bacteria surface, can be activated to Plm, endowing bacteria with the ability to break down ECM and basal membranes proteins contributing to tissue injury in tuberculosis.  相似文献   

10.
11.
Enzymes of the de novo purine biosynthetic pathway have been identified as essential for the growth and survival of Mycobacterium tuberculosis and thus have potential for the development of anti-tuberculosis drugs. The final two steps of this pathway are carried out by the bifunctional enzyme 5-aminoimidazole-4-carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC), also known as PurH. This enzyme has already been the target of anti-cancer drug development. We have determined the crystal structures of the M. tuberculosis ATIC (Rv0957) both with and without the substrate 5-aminoimidazole-4-carboxamide ribonucleotide, at resolutions of 2.5 and 2.2 Å, respectively. As for other ATIC enzymes, the protein is folded into two domains, the N-terminal domain (residues 1–212) containing the cyclohydrolase active site and the C-terminal domain (residues 222–523) containing the formyltransferase active site. An adventitiously bound nucleotide was found in the cyclohydrolase active site in both structures and was identified by NMR and mass spectral analysis as a novel 5-formyl derivative of an earlier intermediate in the biosynthetic pathway 4-carboxy-5-aminoimidazole ribonucleotide. This result and other studies suggest that this novel nucleotide is a cyclohydrolase inhibitor. The dimer formed by M. tuberculosis ATIC is different from those seen for human and avian ATICs, but it has a similar ∼50-Å separation of the two active sites of the bifunctional enzyme. Evidence in M. tuberculosis ATIC for reactivity of half-the-sites in the cyclohydrolase domains can be attributed to ligand-induced movements that propagate across the dimer interface and may be a common feature of ATIC enzymes.  相似文献   

12.
Even being a bacterial purine nucleoside phosphorylase (PNP), which normally shows hexameric folding, the Mycobacterium tuberculosis PNP (MtPNP) resembles the mammalian trimeric structure. The crystal structure of the MtPNP apoenzyme was solved at 1.9 A resolution. The present work describes the first structure of MtPNP in complex with phosphate. In order to develop new insights into the rational drug design, conformational changes were profoundly analyzed and discussed. Comparisons over the binding sites were specially studied to improve the discussion about the selectivity of potential new drugs.  相似文献   

13.
14.
目的探讨结核杆菌CW抗原和rTPA38蛋白用于结核病血清学诊断的价值。方法以CW和rTPA38蛋白为抗原,LAM为对照,用DICFA检测血清中的抗结核抗体。结果191例肺结核病人血清,用CW、rTPA38和LAM检测的敏感性分别为78.0%、65.5%和72.3%,特异性分别为95.9%、98.4%和95.9%。统计分析显示CW和rTPA38检测肺结核病人血清抗结核抗体的敏感性差异有非常显著性(χ^2=16.230,P〈0.01)。两者检测健康人和非结核组病人血清的特异性差异有显著性(χ^2=3.972,P〈0.05)。检测痰涂片阳性血清86例,发现CW和rTPA38与痰阳的一致率分别为84.9%和69.8%,CW抗原与痰涂片的阳性反应明显高于rTPA38。结论CW抗原有较好的敏感性和特异性,且与痰涂片有较高的符合率,有助于结核病的血清学诊断。  相似文献   

15.
We show that a conventionally purified glycoprotein component of Echinococcus multilocularis protoscolex, designated as Emgp-89, may be useful as a serodiagnostic antigen for detecting E. multilocularis infection in dogs domesticated in endemic areas. Emgp-89 was obtained from the parasite material by a simple procedure using Con A-agarose and subsequent gel filtration chromatography. The purified fraction showed a molecular weight of >4000 kDa upon gel filtration and reacted with a series of lectins that specifically bind to mannose, galactose, N-acetylglucosamine, and N-acetylgalactosamine. Subsequently, serodiagnostic performance of Emgp-89 was evaluated through enzyme-linked immunosorbent assays (ELISAs) by using sera from normal, domestic dogs and dogs infected with other helminths. Emgp-89 positively reacted with all 16 serum samples from E. multilocularis-infected dogs, thus showing that this antigen is highly sensitive. On the other hand, the specificity of Emgp-89-based ELISA, determined using 41 serum samples from dogs infected with other helminths, was relatively low (83%). As an attempt to improve the specificity of Emgp-89-based ELISA, we pretreated Emgp-89 with proteinase K or sodium periodate, expecting that these treatments would enable discrimination of true positives from false positives. The ELISA value increased after treatment with sodium periodate in most false-positive samples, whereas significant decreases were observed in sera from all dogs infected with E. multilocularis. Further evaluation of this antigen should be performed using sera from dogs infected with closely-related parasites, including taeniid cestodes, which are expected to prove that this serodiagnostic system is sufficiently specific for clinical and field applications.  相似文献   

16.
Cytochrome P450 mono-oxygenases (2UUQ) enzyme from Mycobacterium tuberculosis catalyzes oxidation of organic compounds such as lipids and steroidal hormones therefore remain as potential drug target. Currently available first line anti-tuberculosis drugs have been caused several side effects in the body as well as resistance development by mycobacterium against these drugs, necessitates the considerable need for finding new drugs. Therefore, we propose a structure based computational method to find a new potential inhibitor for cytochrome P450 mono-oxygenases enzyme. Compounds from several ligand databases were docked against the functional sites of 2UUQ (A) through the standard GEMDOCK v2.0 and AUTODOCK4.0 molecular docking tools. Commercially available chemical compound ZINC00004165 (5-[3-(2-nitroimidazol-1-yl) propyl] phenanthridine) has produced top rank with lowest interaction energy of -113.2 (via GEMDOCK) and lowest docking energy of -9.80 kcal/mol (via AUTODOCK) as compared to first line anti TB compounds. Z score and normal distribution analysis verified that the ZINC00004165 compound has more affinity towards 2UUQ in comparison to large number of random population of compounds. ZINC00004165 is also in agreement with the drug likeness properties of Lipinski rule of five without any violation. Therefore, our finding concludes that the commercial compound ZINC00004165 can act as a potential inhibitor against cytochrome P450 mono-oxygenases enzyme of Mycobacterium tuberculosis.  相似文献   

17.
Being an obligate aerobe, Mycobacterium tuberculosis faces a number of energetic challenges when it encounters hypoxia and environmental stress during intracellular infection. Consequently, it has evolved innovative strategies to cope with these unfavorable conditions. Here, we report a novel flavohemoglobin (MtbFHb) from M. tuberculosis that exhibits unique features within its heme and reductase domains distinct from conventional FHbs, including the absence of the characteristic hydrogen bonding interactions within the proximal heme pocket and mutations in the FAD and NADH binding regions of the reductase domain. In contrast to conventional FHbs, it has a hexacoordinate low-spin heme with a proximal histidine ligand lacking imidazolate character and a distal heme pocket with a relatively low electrostatic potential. Additionally, MtbFHb carries a new FAD binding site in its reductase domain similar to that of D-lactate dehydrogenase (D-LDH). When overexpressed in Escherichia coli or Mycobacterium smegmatis, MtbFHb remained associated with the cell membrane and exhibited D-lactate:phenazine methosulfate reductase activity and oxidized D-lactate into pyruvate by converting the heme iron from Fe(3+) to Fe(2+) in a FAD-dependent manner, indicating electron transfer from D-lactate to the heme via FAD cofactor. Under oxidative stress, MtbFHb-expressing cells exhibited growth advantage with reduced levels of lipid peroxidation. Given the fact that D-lactate is a byproduct of lipid peroxidation and that M. tuberculosis lacks the gene encoding D-LDH, we propose that the novel D-lactate metabolizing activity of MtbFHb uniquely equips M. tuberculosis to balance the stress level by protecting the cell membrane from oxidative damage via cycling between the Fe(3+)/Fe(2+) redox states.  相似文献   

18.
Twenty six 2,6-disubstituted 4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide derivatives were designed by molecular hybridization approach using and synthesized from piperidin-4-one by five step synthesis. Compounds were evaluated for Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibition study, in vitro activities against MTB, cytotoxicity against RAW 264.7 cell line. Among the compounds, 6-(4-nitrophenylsulfonyl)-2-(5-nitrothiophene-2-carboxamido)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (11) was found to be the most active compound with IC50 of 5.87 ± 0.12 μM against MTB PS, inhibited MTB with MIC of 9.28 μM and it was non-cytotoxic at 50 μM. The binding affinity of the most potent inhibitor 11 was further confirmed biophysically through differential scanning fluorimetry.  相似文献   

19.
In bacteria, most secreted proteins are exported through the SecYEG translocon by the SecA ATPase motor via the general secretion or “Sec” pathway. The identification of an additional SecA protein, particularly in Gram-positive pathogens, has raised important questions about the role of SecA2 in both protein export and establishment of virulence. We previously showed in Mycobacterium tuberculosis, the causative agent of tuberculosis, the accessory SecA2 protein possesses ATPase activity that is required for bacterial survival in host macrophages, highlighting its importance in virulence. Here, we show that SecA2 binds ADP with much higher affinity than SecA1 and releases the nucleotide more slowly. Nucleotide binding also regulates movement of the precursor-binding domain in SecA2, unlike in SecA1 or conventional SecA proteins. This conformational change involving closure of the clamp in SecA2 may provide a mechanism for the cell to direct protein export through the conventional SecA1 pathway under normal growth conditions while preventing ordinary precursor proteins from interacting with the specialized SecA2 ATPase.  相似文献   

20.
Abstract Free lipids were extracted from Mycobacterium tuberculosis H37Rv, and their antigenicity was assessed directly on thin-layer chromatograms (TLC) by an immunostaining technique. A family of glycolipids, composed of trehalose acylated with multimethyl branched long-chain fatty acids, was investigated. The most polar of these glycolipids was identified as a possible specific surface antigen. A pair of novel polar glycolipids also showed positive antigenic reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号