首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyomavirus‐associated nephropathy (PVAN) is a major complication that occurs after renal transplantation and is induced by reactivation of the human polyomavirus BK (BKV). The structure of the viral capsid protein 1 (VP1) is characterized by the presence of external loops, BC, DE, EF, GH, and HI, which are involved in receptor binding. The pathogenesis of PVAN is not well understood, but viral risk factors are thought to play a crucial role in the onset of this pathology. In an attempt to better understand PVAN pathogenesis, the BKV‐VP1 coding region was amplified, cloned, and sequenced from the urine of kidney transplant recipients who did, and did not, develop the pathology. Urine viral loads were determined by using real time quantitative PCR (Q‐PCR). Amino acid substitutions were detected in 6/8 patients, and 6/7 controls. The BC and EF loop regions were most frequently affected by mutations, while no mutations were found within the GH and HI loops of both patients and controls. Some mutations, that were exclusively detected in the urine of PVAN patients, overlapped with previously reported mutations, although a correlation between changes in amino acids and the development of PVAN was not found. Urine viral loads were higher than that of the proposed cut‐off loads for identification of patients that are at a high risk of developing PVAN (107 copies/ml), both in the PVAN and control groups, thus confirming that urine viral load is not a useful predictive marker for the development of PVAN. J. Cell. Physiol. 222:195–199, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
For the human polyomaviruses JC virus (JCV) and BK virus (BKV), the first step to a successful infection involves binding to sialic acid moieties located on the surfaces of host cells. By stripping and then reconstituting specific sialic acid linkages on host cells, we show that JCV uses both α(2,3)-linked and α(2,6)-linked sialic acids on N-linked glycoproteins to infect cells. For both JCV and BKV, the sialic acid linkages required for cell surface binding directly correlate with the linkages required for infection. In addition to sialic acid linkage data, these data suggest that the third sugar from the carbohydrate chain terminus is important for virus binding and infection.  相似文献   

3.
Theiler's murine encephalomyelitis viruses (TMEV) consist of two groups, the high- and low-neurovirulence groups, based on lethality in intracerebrally inoculated mice. Low-neurovirulence TMEV result in a persistent central nervous system infection in mice, leading to an inflammatory demyelinating pathology and disease. Low- but not high-neurovirulence strains use sialic acid as an attachment factor. The recent resolution of the crystal structure of the low-neurovirulence DA virus in complex with the sialic acid mimic sialyllactose demonstrated that four capsid residues make contact with sialic acid through noncovalent hydrogen bonds. To systematically test the importance of these sialic acid-binding residues in viral entry and infection, we mutated three VP2 puff B amino acids proposed to make contact with sialic acid and analyzed the consequences of each amino acid substitution on viral entry and spread. The fourth residue is in the VP3-VP1 cleavage dipeptide and could not be mutated. Our data suggest that residues Q2161 and G2174 are directly involved in BeAn virus attachment to sialic acid and that substitutions of these two residues result in the loss of or reduced viral binding and hemagglutination and in the inability to spread among BHK-21 cells. In addition, a gain of function-revertant virus was recovered with the Q2161A mutation after prolonged passage in cells.  相似文献   

4.
The role of receptor recognition in the emergence of virulent viruses was investigated in the infection of severe combined immunodeficient (SCID) mice by the apathogenic prototype strain of the parvovirus minute virus of mice (MVMp). Genetic analysis of isolated MVMp viral clones (n = 48) emerging in mice, including lethal variants, showed only one of three single changes (V325M, I362S, or K368R) in the common sequence of the two capsid proteins. As was found for the parental isolates, the constructed recombinant viruses harboring the I362S or the K368R single substitutions in the capsid sequence, or mutations at both sites, showed a large-plaque phenotype and lower avidity than the wild type for cells in the cytotoxic interaction with two permissive fibroblast cell lines in vitro and caused a lethal disease in SCID mice when inoculated by the natural oronasal route. Significantly, the productive adsorption of MVMp variants carrying any of the three mutations selected through parallel evolution in mice showed higher sensitivity to the treatment of cells by neuraminidase than that of the wild type, indicating a lower affinity of the viral particle for the sialic acid component of the receptor. Consistent with this, the X-ray crystal structure of the MVMp capsids soaked with sialic acid (N-acetyl neuraminic acid) showed the sugar allocated in the depression at the twofold axis of symmetry (termed the dimple), immediately adjacent to residues I362 and K368, which are located on the wall of the dimple, and approximately 22 A away from V325 in a threefold-related monomer. This is the first reported crystal structure identifying an infectious receptor attachment site on a parvovirus capsid. We conclude that the affinity of the interactions of sialic-acid-containing receptors with residues at or surrounding the dimple can evolutionarily regulate parvovirus pathogenicity and adaptation to new hosts.  相似文献   

5.
Cell attachment and membrane penetration are functions of the rotavirus outer capsid spike protein, VP4. An activating tryptic cleavage of VP4 produces the N-terminal fragment, VP8*, which is the viral hemagglutinin and an important target of neutralizing antibodies. We have determined, by X-ray crystallography, the atomic structure of the VP8* core bound to sialic acid and, by NMR spectroscopy, the structure of the unliganded VP8* core. The domain has the beta-sandwich fold of the galectins, a family of sugar binding proteins. The surface corresponding to the galectin carbohydrate binding site is blocked, and rotavirus VP8* instead binds sialic acid in a shallow groove between its two beta-sheets. There appears to be a small induced fit on binding. The residues that contact sialic acid are conserved in sialic acid-dependent rotavirus strains. Neutralization escape mutations are widely distributed over the VP8* surface and cluster in four epitopes. From the fit of the VP8* core into the virion spikes, we propose that VP4 arose from the insertion of a host carbohydrate binding domain into a viral membrane interaction protein.  相似文献   

6.
Nuclear magnetic resonance spectroscopy demonstrates that the rhesus rotavirus hemagglutinin specifically binds alpha-anomeric N-acetylneuraminic acid with a K(d) of 1.2 mM. The hemagglutinin requires no additional carbohydrate moieties for binding, does not distinguish 3' from 6' sialyllactose, and has approximately tenfold lower affinity for N-glycolylneuraminic than for N-acetylneuraminic acid. The broad specificity and low affinity of sialic acid binding by the rotavirus hemagglutinin are consistent with this interaction mediating initial cell attachment prior to the interactions that determine host range and cell type specificity.  相似文献   

7.
A transgenic mouse model was used to identify an HLA-A*02-restricted epitope within the VP1 polypeptide of a human polyomavirus, BK virus (BKV), which is associated with polyomavirus-associated nephropathy in kidney transplant patients. Peptide stimulation of splenocytes from mice immunized with recombinant modified vaccinia virus Ankara expressing BKV VP1 resulted in expansion of cytotoxic T lymphocytes (CTLs) recognizing the sequence LLMWEAVTV corresponding to amino acid residues 108 to 116 (BKV VP1p108). These effector T-cell populations represented functional CTLs as assessed by cytotoxicity and cytokine production and were cross-reactive against antigen-presenting cells pulsed with a peptide corresponding to the previously described JC virus (JCV) VP1 homolog sequence ILMWEAVTL (JCV VP1p100) (I. J. Koralnik et al., J. Immunol. 168:499-504, 2002). A panel of 10 healthy HLA-A*02 human volunteers and two kidney transplant recipients were screened for T-cell immunity to this BK virus VP1 epitope by in vitro stimulation of their peripheral blood mononuclear cells (PBMC) with the BKV VP1p108 peptide, followed by tetramer labeling combined with simultaneous assays to detect intracellular cytokine production and degranulation. PBMC from 4/10 subjects harbored CTL populations that recognized both the BKV VP1p108 and the JCV VP1p100 peptides with comparable efficiencies as measured by tetramer binding, gamma interferon production, and degranulation. CTL responses to the JCV VP1p100 epitope have been associated with prolonged survival in progressive multifocal leukoencephalopathy patients (R. A. Du Pasquier et al., Brain 127:1970-1978, 2004; I. J. Koralnik et al., J. Immunol. 168:499-504, 2002). Given that both human polyomaviruses are resident in a high proportion of healthy individuals and that coinfection occurs (W. A. Knowles et al., J. Med. Virol. 71:115-123, 2003), our findings suggest a reinterpretation of this protective T-cell immunity, suggesting that the same VP1 epitope is recognized in HLA-A*02 persons in response to either BK or JC virus infection.  相似文献   

8.
Paramyxoviruses are the leading cause of respiratory disease in children. Several paramyxoviruses possess a surface glycoprotein, the hemagglutinin-neuraminidase (HN), that is involved in attachment to sialic acid receptors, promotion of fusion, and removal of sialic acid from infected cells and progeny virions. Previously we showed that Newcastle disease virus (NDV) HN contained a pliable sialic acid recognition site that could take two states, a binding state and a catalytic state. Here we present evidence for a second sialic acid binding site at the dimer interface of HN and present a model for its involvement in cell fusion. Three different crystal forms of NDV HN now reveal identical tetrameric arrangements of HN monomers, perhaps indicative of the tetramer association found on the viral surface.  相似文献   

9.
Sperm binding activity has been detected in zona pellucida (ZP) glycoproteins and it is generally accepted that this activity resides in the carbohydrate moieties. In the present study we aim to identify some of the specific carbohydrate molecules involved in the bovine sperm-ZP interaction. We performed sperm binding competition assays, in vitro fecundation (IVF) in combination with different lectins, antibodies and neuraminidase digestion, and chemical and cytochemical analysis of the bovine ZP. Both MAA lectin recognising alpha-2,3-linked sialic acid and neuraminidase from Salmonella typhimurium with catalytic activity for alpha-2,3-linked sialic acid, demonstrated a high inhibitory effect on the sperm-ZP binding and oocyte penetration. These results suggest that bovine sperm-ZP binding is mediated by alpha-2,3-linked sialic acid. Experiments with trisaccharides (sialyllactose, 3'-sialyllactosamine and 6'-sialyllactosamine) and glycoproteins (fetuin and asialofetuin) corroborated this and suggest that at least the sequence Neu5Ac(alpha2-3)Gal(beta1-4)GlcNAc is involved in the sperm-ZP interaction. Moreover, these results indicate the presence of a sperm plasma membrane specific protein for the sialic acid. Chemical analysis revealed that bovine ZP glycoproteins contain mainly Neu5Ac (84.5%) and Neu5GC (15.5%). These two types of sialic acid residues are probably linked to Galbeta1,4GlcNAc and GalNAc by alpha-2,3- and alpha-2,6-linkages, respectively, as demonstrated by lectin cytochemical analysis. The use of a neuraminidase inhibitor resulted in an increased number of spermatozoa bound to the ZP and penetrating the oocyte. From this last result we hypothesize that a neuraminidase from cortical granules would probably participate in the block to polyspermy by removing sialic acid from the ZP.  相似文献   

10.
Polyomavirus JC (JCV) infection causes the fatal human demyelinating disease, progressive multifocal leukoencephalopathy. Although the initial interaction of JCV with host cells occurs through direct binding of the major viral capsid protein (VP1) with cell-surface molecules possessing sialic acid, these molecules have not yet been identified. In order to isolate monoclonal antibodies which inhibit attachment of JCV, we established an immunoscreening system using virus-like particles consisting of the VP1. Using this system, among monoclonal antibodies against the cell membrane fraction from JCV-permissive human neuroblastoma IMR-32 cells, we isolated a monoclonal antibody designated as 24D2 that specifically inhibited attachment and infection of JCV to IMR-32 cells. The antibody 24D2 recognized a single molecule of around 60 kDa in molecular weight in the IMR-32 membrane fraction. Immunohistochemical staining with 24D2 demonstrated immunoreactivity in the cell membrane of JCV-permissive cell lines and glial cells of the human brain. These results suggested that the molecule recognized by 24D2 plays a role in JCV infection, and that it might participate as a receptor or a co-receptor in JCV attachment and entry into the cells.  相似文献   

11.
Abbreviations HA Hemagglutinin

MD Molecular Dynamics

MM-PBSA Molecular Mechanics Poisson–Boltzmann Surface Area

NA Neuraminidase

NAMD Nanoscale Molecular Dynamic Simulation

PMEMD Particle Mesh Ewald Molecular Dynamics

RMSD Root-Mean-Square Deviation

RMSF Root-Mean-Square Fluctuation

SIA sialic acid

VMD Visual Molecular Dynamics

Communicated by Ramaswamy H. Sarma  相似文献   

12.
The influence of sialidase and sialyltransferase on the binding of 3H-estradiol to estrogen receptors in baboon uterus was investigated to ascertain if sialylation was involved. Specific binding capacity increased approximately 37% in the presence of sialidase, although Kd values essentially remained unchanged. 3H-Estradiol binding was correlated with free sialic acid in the presence of either sialidase or sialyltransferase. As sialidase concentrations were increased, 3H-estradiol binding and free sialic acid concentration increased linearly (r = 0.937, p less than 0.001). Incubation of 22 x 10(-5) U sialidase with its inhibitor, 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, decreased binding capacity and sialic acid concentration (r = 0.929, p less than 0.001). Although a decrease in binding capacity and free sialic acid concentration was observed in the presence of increasing amounts of sialyltransferase, a positive correlation was found between these two parameters (r = 0.839, p less than 0.035). A negative trend that was statistically insignificant was observed between binding capacity and sialic acid concentration when 2 x 10(-4) U sialyltransferase was incubated with the inhibitor, acetylsalicylic acid (r = -0.571, p = 0.195). The sialic acid concentration increased, while the 3H-estradiol binding capacity decreased. Collectively, these results show that both sialidase and sialyltransferase affect the binding of estradiol to its receptor in opposite directions. We suggest that biological activities of estrogen receptors in target cells may be regulated by the extent of sialylation of the receptor molecule itself. This posttranslational alteration may represent a new type of control mechanism for estrogen action.  相似文献   

13.
Infection of glial cells by the human polyomavirus JC (JCV) causes progressive multifocal leukoencephalopathy (PML). JCV Encephalopathy (JCVE) is a newly identified disease characterized by JCV infection of cortical pyramidal neurons. The virus JCVCPN associated with JCVE contains a unique 143 base pair deletion in the agnogene. Contrary to most JCV brain isolates, JCVCPN has an archetype-like regulatory region (RR) usually found in kidney strains. This provided us with the unique opportunity to determine for the first time how each of these regions contributed to the phenotype of JCVCPN. We characterized the replication of JCVCPN compared to the prototype virus JCVMad-1 in kidney, glial and neuronal cell lines. We found that JCVCPN is capable of replicating viral DNA in all cell lines tested, but is unable to establish persistent infection seen with JCVMad-1. JCVCPN does not have an increased ability to replicate in the neuronal cell line tested. To determine whether this phenotype results from the archetype-like RR or the agnogene deletion, we generated chimeric viruses between JCVCPN of JCVMad-1. We found that the deletion in the agnogene is the predominant cause of the inability of the virus to maintain a persistent infection, with the introduction of a full length agnogene, either with or without agnoprotein expression, rescues the replication of JCVCPN. Studying this naturally occurring pathogenic variant of JCV provides a valuable tool for understanding the functions of the agnogene and RR form in JCV replication.  相似文献   

14.
Polyomaviruses are nonenveloped viruses with capsids composed primarily of 72 pentamers of the viral VP1 protein, which forms the outer shell of the capsid and binds to cell surface oligosaccharide receptors. Highly conserved VP1 proteins from closely related polyomaviruses recognize different oligosaccharides. To determine whether amino acid changes restricted to the oligosaccharide binding site are sufficient to determine receptor specificity and how changes in receptor usage affect tropism, we studied the primate polyomavirus simian virus 40 (SV40), which uses the ganglioside GM1 as a receptor that mediates cell binding and entry. Here, we used two sequential genetic screens to isolate and characterize viable SV40 mutants with mutations in the VP1 GM1 binding site. Two of these mutants were completely resistant to GM1 neutralization, were no longer stimulated by incorporation of GM1 into cell membranes, and were unable to bind to GM1 on the cell surface. In addition, these mutant viruses displayed an infection defect in monkey cells with high levels of cell surface GM1. Interestingly, one mutant infected cells with low cell surface GM1 more efficiently than wild-type virus, apparently by utilizing a different ganglioside receptor. Our results indicate that a small number of mutations in the GM1 binding site are sufficient to alter ganglioside usage and change tropism, and they suggest that VP1 divergence is driven primarily by a requirement to accommodate specific receptors. In addition, our results suggest that GM1 binding is required for vacuole formation in permissive monkey CV-1 cells. Further study of these mutants will provide new insight into polyomavirus entry, pathogenesis, and evolution.  相似文献   

15.
Sialic acid binding is required for infectious cell surface receptor recognition by parvovirus minute virus of mice (MVM). We have utilized a glycan array consisting of approximately 180 different carbohydrate structures to identify the specific sialosides recognized by the prototype (MVMp) and immunosuppressive (MVMi) strains of MVM plus three virulent mutants of MVMp, MVMp-I362S, MVMp-K368R, and MVMp-I362S/K368R. All of the MVM capsids specifically bound to three structures with a terminal sialic acid-linked alpha2-3 to a common Galbeta1-4GlcNAc motif: Neu5Acalpha2-3Galbeta1-4GlcNAcbeta1-4Galbeta1-4GlcNAc (3'SiaLN-LN), Neu5Acalpha2-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4GlcNAc (3'SiaLN-LN-LN), and Neu5Acalpha2-3Galbeta1-4(Fucalpha1-3)-GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1-3Galbeta1-4(Fucalpha1-3)GlcNAc (sLe(x)-Le(x)-Le(x)). In addition, MVMi also recognized four multisialylated glycans with terminal alpha2-8 linkages: Neu5Acalpha2-8Neu5Acalpha2-8Neu5Acalpha ((Sia)(3)), Neu5Acalpha2-8Neu5Acalpha2-3Galbeta1-4Glc (GD3), Neu5Acalpha2-8Neu5Acalpha2-8Neu5Acalpha2-3Galbeta1-4Glc (GT3), and Neu5Acalpha2-8Neu5Acalpha2-3(GalNAcbeta1-4)Galbeta1-4Glc (GD2). Interestingly, the virulent MVMp-K368R mutant also recognized GT3. Analysis of the relative binding affinities using a surface plasmon resonance biospecific interaction (BIAcore) assay showed the wild-type MVMp and MVMi capsids binding with higher affinity to selected glycans compared with the virulent MVMp mutants. The reduced affinity of the virulent MVMp mutants are consistent with previous in vitro cell binding assays that had shown weaker binding to permissive cells compared with wild-type MVMp. This study identifies the sialic acid structures recognized by MVM. It also provides rationale for the tropism of MVM for malignant transformed cells that contain sLe(x) motifs and the neurotropism of MVMi, which is likely mediated via interactions with multisialylated glycans known to be tumor cell markers. Finally, the observations further implicate a decreased binding affinity for sialic acid in the in vivo adaptation of MVMp to a virulent phenotype.  相似文献   

16.
The influenza virus neuraminidase (NA) is essential for viral infection and offers a potential target for antiviral drug development. We prepared a carbocyclic sialic acid analogue, potentially able to inhibit NA. Its structure is an analogue of the transition-state of the reaction catalysed by NA. As starting material, quinic acid was selected owing to its ready availability and its stereochemical feature suitable for the target structure. The quinic acid was first converted in the shikimic acid; then two of the three hydroxyl functions of this product were selectively functionalised to obtain the target molecule (3R,4S,5R)-4-acetamido-3-guanidino-5-hydroxycyclohex-1-ene-1-carboxylic acid.  相似文献   

17.
18.
19.
N-acetylneuraminic acid (NeuNAc), the most naturally abundant sialic acid, is incorporated as the terminal residue of mammalian cell surface glycoconjugates and acts as a key facilitator of cellular recognition, adhesion and signalling. Several pathogenic bacteria similarly express NeuNAc on their cell surfaces, allowing evasion of their host's immune system. Prokaryotic NeuNAc biosynthesis proceeds via condensation of phosphoenolpyruvate (PEP) with N-acetylmannosamine (ManNAc), a reaction catalysed by the domain-swapped homodimeric enzyme, N-acetylneuraminic acid synthase (NeuNAcS). Conversely, the mammalian orthologue, N-acetylneuraminic acid 9-phosphate synthase (NeuNAc 9-PS) utilises the phosphorylated substrate N-acetylmannosamine 6-phosphate (ManNAc 6-P) in catalysis. Here we report an investigation into the determinants of substrate specificity of human NeuNAc 9-PS, using model-guided mutagenesis to delineate binding interactions with ManNAc 6-P. Modelling predicts the formation of a domain-swapped homodimer as observed for bacterial variants, which was supported by experimental small angle X-ray scattering. A number of conserved residues which may play key roles in the selection of ManNAc 6-P were identified and substituted for alanine to assess their function. Lys290 and Thr80 were identified as a putative phosphate binding pair, with the cationic lysine residue extending into the active site from the adjacent chain of the dimeric enzyme. Substitution of these residues results in a significant loss of activity and reduced affinity for ManNAc 6-P. These residues, along with the electropositive β2α2 loop, are likely to facilitate the PEP dependent binding and stabilisation of ManNAc 6-P. By utilising a phosphorylated sugar-substrate, the mammalian enzyme gains considerable catalytic affinity advantage over its bacterial counterpart.  相似文献   

20.
Theiler's murine encephalomyelitis virus (TMEV) is a natural pathogen of the mouse. The different strains of TMEV are divided into two subgroups according to the pathology they provoke. The neurovirulent strains GDVII and FA induce an acute fatal encephalitis, while persistent strains, like DA and BeAn, cause a chronic demyelinating disease associated with viral persistence in the central nervous system. Different receptor usage was proposed to account for most of the phenotype difference between neurovirulent and persistent strains. Persistent but not neurovirulent strains were shown to bind sialic acid. We characterized DA and GDVII derivatives adapted to grow on CHO-K1 cells. Expression of glycosaminoglycans did not influence infection of CHO-K1 cells by parental and adapted viruses. Mutations resulting from adaptation of DA and GDVII to CHO-K1 cells notably mapped to the well-characterized VP1 CD and VP2 EF loops of the capsid. Adaptation of the DA virus to CHO-K1 cells correlated with decreased sialic acid usage for entry. In contrast, adaptation of the GDVII virus to CHO-K1 cells correlated with the appearance of a weak sialic acid usage for entry. The sialic acid binding capacity of the GDVII variant resulted from a single amino acid mutation (VP1-51, Asn-->Ser) located out of the sialic acid binding region defined for virus DA. Mutations affecting tropism in vitro and sialic acid binding dramatically affected the persistence and neurovirulence of the viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号