首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Summary An in situ hybridization procedure was developed for mitotic potato chromosomes by using a potato 24S rDNA probe. This repetitive sequence hybridized to the nucleolar organizer region (NOR) of chromosome 2 in 95%–100% of the metaphase plates. Another repetitive sequence (P5), isolated from the interdihaploid potato HH578, gave a ladderpattern in genomic Southern's of Solanum tuberosum and Solanum phureja, but not in those of Solanum brevidens and two Nicotiana species. This sequence hybridized predominantly on telomeric and centromeric regions of all chromosomes, although chromosomes 7, 8, 10 and 11 were not always labeled clearly.  相似文献   

2.
We have used in situ hybridization to determine the sites of insertion of Agrobacterium rhizogenes Ri T-DNA in the chromosomes of Crepis capillaris (2n = 6) transformed roots. Four transformed root lines were obtained by infecting Crepis stem segments with A. rhizogenes. Southern hybridization analysis indicated that each root line was the result of one or more independent T-DNA insertion events. In two root lines, one copy of T-DNA was present; the other two root lines each contained two copies of T-DNA. To localize these T-DNA inserts on Crepis chromosomes, metaphase spreads were perpared from each root line, and hybridized in situ to a biotinlabeled T-DNA probe. The results indicated that T-DNA was present in a different chromosomal location in each root line, and that each chromosome had been a target for T-DNA insertion at least once. In the root lines containing two T-DNA inserts, two patterns of integration were observed: in one case the T-DNAs were present on separate chromosomes; in the other case the two T-DNAs were close together (but not tandemly arranged) on a single chromosome. A comparison of these results and those obtained previously for a fifth Crepis-transformed root line demostrated that Ri T-DNA does not insert preferentially into a particlar chromosomal location.  相似文献   

3.
Summary An in situ hybridization method was developed for detecting single or low copy number genes in metaphase chromosomes of plants. Using as a probe 3H-labelled plasmid pABDI, which confers kanamycin resistance (Kmr) to transformed cells. DNA introduced into the plant genome by direct gene transfer was detected with a high efficiency: about 60% to 80% of interphase and metaphase plates showed a strong signal. The insertion site of the Kmr gene in two independent transformants was localised on different homologous chromosome pairs. This result independently confirmed previous genetic data which had indicated that transformed DNA was integrated into plant chromosomes in single blocks.  相似文献   

4.
We employed in situ hybridization (“chromosome painting”) of chromosome-specific DNA libraries of all human chromosomes to establish homologies between the human and siamang karyotypes (Hylobates syndactylus, 2n = 50). Numerous intra- and interchromosomal rearrangements have led to a massive reorganization of the siamang karyotype. There have been a minimum of 33 translocations. The 24 siamang autosomes are composed of 60 recognizable segments that show DNA homology to regions of the 22 human autosomes. Only two autosomes have not been involved in translocations. The siamang presents a case, in a primate closely related to humans, in which chromosome morphology and synteny are highly disturbed in a manner similar to that encountered among rodents. © 1995 Wiley-Liss, Inc.  相似文献   

5.
RFLP analyses were performed on wheat-Aegilops uniaristata Vis. addition and translocation lines to confirm the identity of added N-genome chromosomes. Complete 1N, 3N, 4N, 5N and 7N chromosome additions were identified, while the complete long arm and only part of the short arm was identified for chromosome 2N. There were no wheat-like 4/5 and 4/7 translocations in the Ae. uniaristata chromosomes. Chromosome 3N carried an asymmetric pericentric inversion, and the translocation line was a product of centric fusion between the long arms of chromosomes 3B and 3N. Chromosome-specific RAPD and microsatellite markers were also identified for all the added Ae. uniaristata chromosomes available in this set of addition lines. A new genomic in situ hybridization protocol combining pre-annealing of probe and blocking DNA and prehybridization with blocking DNA was developed to differentiate the very closely related genomes of Ae. uniaristata and wheat. Hybridization sites for the repetitive DNA sequences pAs1, pSc119.2 and pTa71 were identified on the N-genome chromosomes of Ae. uniaristata using the fluorescent in situ hybridization technique. Results showed deviation from the previously published ideogram of this species. A new ideogram, which shows the hybridization sites for the above sequences, was produced in which the chromosomes are arranged according to their homoeologous group. Received: 23 April 1999 / Accepted: 6 August 1999  相似文献   

6.
师明磊  赖维莉  易天红  柯潇  赵志虎 《遗传》2017,39(4):326-332
CHO细胞是常用的哺乳动物表达工程细胞。外源基因整合至CHO细胞染色体后,在大规模蛋白质生产过程中,由于相关压力撤除,外源基因存在丢失的可能,因此有必要对其整合稳定性进行检测。康柏西普(conbercept)是一个能够特异性结合VEGF-A的各种异构体、VEGF-B以及PlGF,从而发挥抗血管生成活性的融合蛋白。康柏西普目前已在美国进入Ⅲ期临床试验。本文运用荧光原位杂交对康柏西普基因在CHO细胞的整合状态进行了检测,发现经过4和19次传代后,康柏西普基因依然能稳定整合在基因组上,并且呈现出3个特点:(1)分布在一条染色体上,而不是多条染色体上;(2)分布在较长的染色体上;(3)在同一染色体上有较多拷贝数。同时,荧光定量PCR结果证明基因拷贝数无明显改变,ELISA检测证明蛋白表达水平亦无明显改变。上述实验证明在经过19次传代以后,康柏西普基因仍然稳定整合在基因组中,并可活跃表达,为康柏西普大规模生产及产品质控提供了有力依据。  相似文献   

7.
The chromosomal location of T-DNa inserts in ten independently derived and confirmed transgenic plants ofP. hybrida was detected byin situ hybridization. Nine transgenic plants had the T-DNA inerts at single sites distributed among each of the seven chromosomes; in one plant the T-DNA inserts were detected on two different chromosomes. Although the T-DNA inserts were integrated randomly among the chromosomes, seven of the 11 total inserts were located at or near the telomere. Thus, T-DNA inserts appear to have potential for tagging chromosomes and chromosome fragments.  相似文献   

8.
A repetitive DNA sequence, ZmCR2.6c, was isolated from maize based on centromeric sequence CCS1 of the wild grass Brachypodium sylvaticum. ZmCR2.6c is 309 bp in length and shares 65% homology to bases 421–721 of the sorghum centromeric sequence pSau3A9. Fluorescence in situ hybridization (FISH) localized ZmCR2.6c to the primary constrictions of pachytene bivalents and to the stretched regions of MI/AI chromosomes, indicating that ZmCR2.6c is an important part of the centromere. Based on measurements of chromosome lengths and the positions of FISH signals of several cells, a pachytene karyotype was constructed for maize inbred line KYS. The karyotype agrees well with those derived from traditional analyses. Four classes of tandemly repeated sequences were mapped to the karyotype by FISH. Repeats 180 bp long are present in cytologically detectable knobs on 5L, 6S, 6L, 7L, and 9S, as well as at the termini and in the interstitial regions of many chromosomes not reported previously. A most interesting finding is the presence of 180-bp repeats in the NOR-secondary constriction. TR-1 elements co-exist with 180-bp repeats in the knob on 6S and form alone a small cluster in 4L. 26S and 5S rRNA genes are located in the NOR and at 2L.88, respectively. The combination of chromosome length, centromere position, and distribution of the tandem repeats allows all chromosomes to be identified unambiguously. The results presented form an important basis for using FISH for physical mapping and for investigating genome organization in maize. Received: 29 June 1999 / Accepted: 10 November 1999  相似文献   

9.
A Japanese girl was diagnosed as true hermaphroditism with 46,X,+mar/46,XY and the marker chromosome was determined on the short arm of chromosome 22 without alpha-satellite by fluorescence in situ hybridization (FISH) and spectral karyotyping (SKY) methods. At birth, she showed intersexual external genitalia, urethral-vaginal fistula and right inguinal hernia. The right gonad was revealed as an ovotestis, and the left was as an undifferentiated testis. The gonadal mosaicism was demonstrated directly in gonadal tissue by interphase FISH.  相似文献   

10.
11.
原位杂交技术 ( in situ hybridization,ISH)是基因定位的主要技术之一。近来 ,随着植物细胞染色体制片技术的发展 ,以及酶联放大检测系统的采用 ,在植物中已有低拷贝和单拷贝甚至小于 1 kb的 DNA序列定位的成功报道 [1 ,2 ]。染色体原位杂交技术不仅可以用于基因的物理作图 ,而且可以用来对转基因植物中的外源基因进行染色体定位 [3 5] 。研究表明 ,外源目的基因在转基因植物中的表达与整合位点有关 [6] 。因而 ,进行外源基因在转基因植物染色体上的定位以及研究外源基因的整合位点与表达之间的关系 ,对于开发和利用转基因植物具有重要…  相似文献   

12.
Summary Genomic in situ hybridization was used to identify alien chromatin in chromosome spreads of wheat, Triticum aestivum L., lines incorporating chromosomes from Leymus multicaulis (Kar. and Kir.) Tzvelev and Thinopyrum bessarabicum (Savul. and Rayss) Löve, and chromosome arms from Hordeum chilense Roem. and Schult, H. vulgare L. and Secale cereale L. Total genomic DNA from the introgressed alien species was used as a probe, together with excess amounts of unlabelled blocking DNA from wheat, for DNA:DNA in-situ hybridization. The method labelled the alien chromatin yellow-green, while the wheat chromosomes showed only the orange-red fluorescence of the DNA counterstain. Nuclei were screened from seedling root-tips (including those from half-grains) and anther wall tissue. The genomic probing method identified alien chromosomes and chromosome arms and allowed counting in nuclei at all stages of the cell cycle, so complete metaphases were not needed. At prophase or interphase, two labelled domains were visible in most nuclei from disomic lines, while only one labelled domain was visible in monosomic lines. At metaphase, direct visualization of the morphology of the alien chromosome or chromosome segment was possible and allowed identification of the relationship of the alien chromatin to the wheat chromosomes. The genomic in-situ hybridization method is fast, sensitive, accurate and informative. Hence it is likely to be of great value for both cytogenetic analysis and in plant breeding programmes.  相似文献   

13.
The sensitivity of fluorescence in situ hybridization (FISH) for mapping plant chromosomes of single-copy DNA sequences is limited. We have adapted for plant cytogenetics a new signal-amplification method termed tyramide-FISH (Tyr-FISH). Until present this technique has only been applied to human chromosomes. The method is based on enzymatic deposition of fluorochrome-conjugated tyramide. With Tyr-FISH it was possible to detect target T-DNA sequences on plant metaphase chromosomes as small as 710 bp without using a cooled CCD camera. Short detection time and high sensitivity, in combination with a low background, make the Tyr-FISH method very suitable for routine application in plant cytogenetic research. With Tyr-FISH we analysed the position of T-DNA inserts in transgenic shallots. We found that the inserts were preferentially located in the distal region of metaphase chromosomes. Sequential fluorescence in situ hybridization with a 375 bp satellite sequence suggested that a specific T-DNA insert was located within the satellite sequence hybridization region on a metaphase chromosome. Analysis of less-condensed prophase and interphase chromosomes revealed that the T-DNA was integrated outside the satellite DNA-hybridization region in a more proximal euchromatin region.  相似文献   

14.
X and Y specific probes were identified in order to apply the fluorescent in situ hybridization (FISH) technique to bovine spermatozoa. For Y chromosome detection, the BRY4a repetitive probe, covering three quarters of the chromosome, was used. For X chromosome detection, a goat Bacterial Artificial Chromosome (BAC) specific to the X chromosome of bovine and goats and giving a strong FISH signal was used. Each probe labeled roughly 45% of sperm cells. The hybridization method will be useful for evaluating the ratio of X- and Y- bearing spermatozoa in a sperm sample and consequently can be used to evaluate the efficiency of sperm sorting by different techniques such as flow cytometry.  相似文献   

15.
目的探讨microRNA-205表达与乳腺恶性病变的关系。方法乳腺疾病及癌组织芯片原位杂交分析microRNA-205的表达;实时定量RT-PCR方法检测正常乳腺细胞株、恶性程度不同的乳腺癌细胞株中microRNA-205的表达。结果原位杂交分析显示,36例正常与良性乳腺病变中,33例(91.67%)表达阳性;36例乳腺癌中,23例(63.89%)表达阳性。microRNA-205的表达在乳腺正常与良性病变中的表达较恶性病变中高且有统计学差异(P=0.011),但与乳腺癌TNM分期、临床分期无关(P0.05)。实时定量RT-PCR结果显示,四个高度恶性乳腺癌细胞株(MDA-MB-231、HS578T、BT549和SUM159PT)中microRNA-205的表达较永生化正常乳腺上皮细胞株MCF10A和四个低度恶性细胞株(MDA-MB-468、T-47D、ZR-75-1和SKBR3)中为低(P0.05)。结论原位杂交适用于microRNA-205的表达分析;组织芯片标本原位杂交与乳腺细胞株实时定量RT-PCR分析结果提示,microRNA-205可能参与了乳腺癌的发生、发展,并随着乳腺癌的演进呈下调趋势。  相似文献   

16.
17.
18.
A novel in situ hybridization technique using sulfonated probes is described. This non-radioactive approach, which employs chemically modified DNA and immunocytochemical procedures, is compatible with pre-G-banding and allows a rapid localization of the hybridized sequences on chromosomal spreads with a high spatial resolution. Using this technique we have localised the Chinese hamster ribosomal genes in the telomeric region of ten chromosomes, and among them in the subtelomeric q region of the Z5 chromosome. These results are discussed, the genetic markers confirming and locating the origin of Z group chromosomes by rearrangements of Chinese hamster chromosomes.  相似文献   

19.
20.
A recently described method that uses methacrylate embedding of aldehyde fixed plant tissues allows the immunolabelling of a range of antigens (Baskin et al. 1992). We have tested whether the same embedding procedure is also compatible with in situ hybridization. For this purpose we have used 2- 5 μm sections of methacrylate embedded plantlets of Arabidopsis thaliana. After removal of the resin the sections were prepared for in situ hybridization following standard procedures. Three different digoxygenin (dig)-labelled probes were used, recognizing RNAs coding for the chlorophyll a/b binding protein cab-140, the β-tubulin tub5 and meri a member of the meri-5 family. Each of the probes shows the labelling pattern expected from the literature. Moreover, the method allows a good structural preservation of very fragile tissues, in contrast to paraffin embedding. We conclude that methacrylate embedding, allowing both immunolabelling and in situ hybridization with high resolution and structural preservation, offers a high potential for the functional analysis of genes and proteins in plant development. This is especially true for Arabidopsis thaliana, a widely used model species where it seems to be the method of choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号