首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skeletal growth is tightly coupled to energy balance via complex and incompletely understood mechanisms. Leptin-deficient ob/ob mice are obese and develop multiple pathologies associated with the metabolic syndrome. Additionally, ob/ob mice have skeletal abnormalities. The objective of this study was to evaluate the effects of leptin deficiency and long duration selective central leptin repletion via recombinant adeno-associated virus-leptin (rAAV-lep) gene therapy on bone in growing ob/ob mice. The ob/ob mice were injected in the hypothalamus with either rAAV-lep or rAAV-GFP (control vector). Treated ob/ob and untreated wild-type (WT) mice were then maintained on a normal diet for 15 weeks. In a second experiment, similarly treated mice along with a group of pair-fed mice were maintained for 30 weeks. Leptin was not detected in blood of either rAAV-lep- or rAAV-GFP-treated mice although rAAV-lep-treated mice displayed leptin transgene expression in the hypothalamus. As expected, rAAV-lep normalized body weight and food intake. Compared to WT mice, rAAV-GFP-treated ob/ob mice had decreased femoral length (by 1.6 mm or 10%, P<0.001), decreased total femur bone volume (by 3.3 mm(3) or 19%, P<0.001), but increased cancellous bone volume in the distal femur (by 0.04 mm(3) or 60%, P<0.09) and lumbar vertebrae (by 0.26 mm(3) or 118%, P<0.001). Treatment with rAAV-lep rescued the ob/ob skeletal phenotype by increasing femoral length and total bone volume, and decreasing femoral and vertebral cancellous bone volume, so that at 15 weeks post-rAAV-lep injection the ob/ob mice no longer differed from WT mice. No further skeletal changes in either the femur or lumbar vertebra were observed at 30 weeks post-rAAV-lep administration. The results suggest that hypothalamic leptin functions as an essential permissive factor for normal bone growth.  相似文献   

2.
Hypothalamic clamp on insulin release by leptin-transgene expression   总被引:3,自引:0,他引:3  
Boghossian S  Dube MG  Torto R  Kalra PS  Kalra SP 《Peptides》2006,27(12):3245-3254
The effects of sustained leptin action locally in the hypothalamus on the functional link between fat accrual and insulin secretion after chronic high fat diet (HFD) consumption in leptin-deficient ob/ob mice, and on the post-prandial insulin response in rats consuming regular chow diet (RCD), was examined in this study. A single intracerebroventricular (icv) injection of recombinant adeno-associated virus vector encoding leptin gene (rAAV-lep) enhanced hypothalamic leptin-transgene expression in ob/ob mice consuming RCD and suppressed the time-related weight gain and fat accumulation concomitant with abrogation of hyperinsulinemia and enhanced glucose tolerance. This increased hypothalamic leptin-transgene expression continued to impose insulinopenia and increased glucose tolerance but was ineffective in suppressing weight gain and fat accumulation after these mice were switched to chronic HFD consumption. A similar icv rAAV-lep pretreatment in rats consuming RCD markedly attenuated the post-prandial rise in insulin release concomitant with suppressed weight and fat depots. These results show for the first time that a sustained hypothalamic leptin action can stably clamp pancreatic insulin secretion independent of the status of fat accrual engendered by diets of varying caloric enrichment. Thus, the efficacy of increased leptin afferent signaling in the hypothalamus to persistently restrain pancreatic insulin release and insulin resistance can be explored as an adjunct therapeutic modality to alleviate pathophysiological derrangements that confer type 2 diabetes.  相似文献   

3.
Leptin-deficient Lep(ob)/Lep(ob) mice exhibit elevations in plasma insulin early in development. The present study tested the hypothesis that absence of leptin during neonatal development permanently programs islets from these mice to hypersecrete insulin. Administration of leptin for 8 days to young adult Lep(ob)/Lep(ob) mice normalized their food intake, plasma insulin concentration, and insulin secretion in response to glucose, acetylcholine, and leptin. Restriction of food intake per se of Lep(ob)/Lep(ob) mice lowered, but did not normalize, plasma insulin concentrations. Food-restricted Lep(ob)/Lep(ob) mice continued to hypersecrete insulin in response to glucose, but islets from these mice did not hyperrespond to acetylcholine or respond to leptin as occurs in ad libitum-fed Lep(ob)/Lep(ob) mice. We conclude that neonatal leptin deficiency does not permanently program islets from mice to hypersecrete insulin. The hyperphagia associated with leptin deficiency contributes substantially to the hypersecretion of insulin, but leptin also appears to have more direct effects on regulation of insulin secretion.  相似文献   

4.
Ghrelin and leptin are suggested to regulate energy homeostasis as mutual antagonists on hypothalamic neurons that regulate feeding behavior. We employed reverse genetics to investigate the interplay between ghrelin and leptin. Leptin-deficient mice (ob/ob) are hyperphagic, obese, and hyperglycemic. Unexpectedly, ablation of ghrelin in ob/ob mice fails to rescue the obese hyperphagic phenotype, indicating that the ob/ob phenotype is not a consequence of ghrelin unopposed by leptin. Remarkably, deletion of ghrelin augments insulin secretion in response to glucose challenge and increases peripheral insulin sensitivity; indeed, the hyperglycemia exhibited by ob/ob mice is markedly reduced when ob/ob mice are bred onto the ghrelin(-/-) background. We further demonstrate that ablation of ghrelin reduces expression of Ucp2 mRNA in the pancreas, which contributes toward enhanced glucose-induced insulin secretion. Hence, chronically, ghrelin controls glucose homeostasis by regulating pancreatic Ucp2 expression and insulin sensitivity.  相似文献   

5.
The adipocyte-derived hormone adiponectin has been shown to play important roles in the regulation of energy homeostasis and insulin sensitivity. In this study, we analyzed globular domain adiponectin (gAd) transgenic (Tg) mice crossed with leptin-deficient ob/ob or apoE-deficient mice. Interestingly, despite an unexpected similar body weight, gAd Tg ob/ob mice showed amelioration of insulin resistance and beta-cell degranulation as well as diabetes, indicating that globular adiponectin and leptin appeared to have both distinct and overlapping functions. Amelioration of diabetes and insulin resistance was associated with increased expression of molecules involved in fatty acid oxidation such as acyl-CoA oxidase, and molecules involved in energy dissipation such as uncoupling proteins 2 and 3 and increased fatty acid oxidation in skeletal muscle of gAd Tg ob/ob mice. Moreover, despite similar plasma glucose and lipid levels on an apoE-deficient background, gAd Tg apoE-deficient mice showed amelioration of atherosclerosis, which was associated with decreased expression of class A scavenger receptor and tumor necrosis factor alpha. This is the first demonstration that globular adiponectin can protect against atherosclerosis in vivo. In conclusion, replenishment of globular adiponectin may provide a novel treatment modality for both type 2 diabetes and atherosclerosis.  相似文献   

6.
The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth hormone secretagogue receptor (GHS-R), and GHS-R antagonists are thought to be an effective strategy for treating diabetes. However, since some of ghrelin's effects are independent of GHS-R, we have utilized genetic approaches to determine whether ghrelin's effect on insulin secretion is mediated through GHS-R and whether GHS-R antagonism indeed inhibits insulin secretion. We investigated the effects of GHS-R on glucose homeostasis in Ghsr-ablated ob/ob mice (Ghsr(-/-):ob/ob). Ghsr ablation did not rescue the hyperphagia, obesity, or insulin resistance of ob/ob mice. Surprisingly, Ghsr ablation worsened the hyperglycemia, decreased insulin, and impaired glucose tolerance. Consistently, Ghsr ablation in ob/ob mice upregulated negative β-cell regulators (such as UCP-2, SREBP-1c, ChREBP, and MIF-1) and downregulated positive β-cell regulators (such as HIF-1α, FGF-21, and PDX-1) in whole pancreas; this suggests that Ghsr ablation impairs pancreatic β-cell function in leptin deficiency. Of note, Ghsr ablation in ob/ob mice did not affect the islet size; the average islet size of Ghsr(-/-):ob/ob mice is similar to that of ob/ob mice. In summary, because Ghsr ablation in leptin deficiency impairs insulin secretion and worsens hyperglycemia, this suggests that GHS-R antagonists may actually aggravate diabetes under certain conditions. The paradoxical effects of ghrelin ablation and Ghsr ablation in ob/ob mice highlight the complexity of the ghrelin-signaling pathway.  相似文献   

7.
Acute treatment of ob/ob mice with S-carboxymethylated hGH (RCM-hGH), a diabetogenic derivative of GH which lacks significant insulin-like and growth-promoting activities, results in an increase in fasting plasma insulin and blood glucose levels and enhanced peripheral tissue insulin resistance. Plasma insulin level increases within 3 h after RCM-hGH is administered, whereas increased blood glucose concentration and enhanced peripheral tissue insulin resistance became evident 6 h after the hormone derivative is given. The lag period seen in the manifestation of these diabetogenic effects of RCM-hGH is consistent with the time required for gene expression. Therefore, the present study was undertaken to determine whether the above acute responses to the diabetogenic action of RCM-hGH would be expressed in ob/ob mice in which protein synthesis was blocked with cycloheximide. Female ob/ob mice were given either saline or cycloheximide (0.1 mg/g BW) ip and 1 h later were fasted and treated with either saline or 200 micrograms RCM-hGH ip. The mice were given a second injection of cycloheximide during the middle of the hormone treatment period to insure that protein synthesis remained blocked for the entire 6 h. In the animals not receiving cycloheximide, fasting plasma insulin level and blood glucose concentration were markedly elevated 6 h after the injection of RCM-hGH. Also, the GH derivative attenuated the ability of insulin added in vitro to stimulate glucose oxidation by adipose tissue segments isolated from the animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Conjugated linoleic acid (CLA) induces insulin resistance preceded by rapid depletion of the adipokines leptin and adiponectin, increased inflammation, and hepatic steatosis in mice. To determine the role of leptin in CLA-mediated insulin resistance and hepatic steatosis, recombinant leptin was coadministered with dietary CLA in ob/ob mice to control leptin levels and to, in effect, negate the leptin depletion effect of CLA. In a 2 x 2 factorial design, 6 week old male ob/ob mice were fed either a control diet or a diet supplemented with CLA and received daily intraperitoneal injections of either leptin or vehicle for 4 weeks. In the absence of leptin, CLA significantly depleted adiponectin and induced insulin resistance, but it did not increase hepatic triglyceride concentrations or adipose inflammation, marked by interleukin-6 and tumor necrosis factor-alpha mRNA expression. Insulin resistance, however, was accompanied by increased macrophage infiltration (F4/80 mRNA) in adipose tissue. In the presence of leptin, CLA depleted adiponectin but did not induce insulin resistance or macrophage infiltration. Despite this, CLA induced hepatic steatosis. In summary, CLA worsened insulin resistance without evidence of inflammation or hepatic steatosis in mice after 4 weeks. In the presence of leptin, CLA failed to worsen insulin resistance but induced hepatic steatosis in ob/ob mice.  相似文献   

10.
The development of glucose intolerance in Aston ob/ob mice showed a gross exaggeration of the age-related changes of glucose tolerance in lean (+/+) mice. Intraperitoneal glucose tolerance in ob/ob mice was poor at 5 weeks, improved by 10 weeks, but markedly worsened by 20 weeks. A 24 hour fast further exaggerated the glucose intolerance of ob/ob mice. Unlike lean mice, tolerance improved in ob/ob mice at 40 weeks. Alterations of insulin sensitivity and the plasma insulin response to glucose accounted in part for these observations. Insulin sensitivity deteriorated until 20 weeks, but improved at 40 weeks in both fed and 24 hour fasted ob/ob mice. A positive plasma insulin response to glucose was lost after 5 weeks in fed ob/ob mice. The severity of this abnormality corresponded with the extent of the basal hyperinsulinaemia. A 24 hour fast reduced plasma insulin concentrations and restored a positive plasma insulin response to glucose in ob/ob mice. The results suggest that the plasma insulin response to glucose in ob/ob mice is related to the secretory activity of the B-cells prior to stimulation. Furthermore, it is evident that factors in addition to insulin insensitivity and the impaired plasma insulin response to glucose contribute to the development of glucose intolerance in these mice.  相似文献   

11.
Adiponectin (ApN) and leptin are two adipocytokines that control fuel homeostasis, body weight, and insulin sensitivity. Their interplay is still poorly studied. These hormones are either undetectable or decreased in obese, diabetic ob/ob mice. We examined the effects of leptin treatment on ApN gene expression, protein production, secretion, and circulating levels of ob/ob mice. We also briefly tackled the influence of this treatment on resistin, another adipocytokine involved in obesity-related insulin resistance. Leptin-treated (T) obese mice (continuous sc infusion for 6 days) were compared with untreated lean (L), untreated obese (O), and untreated pair-fed obese (PF) mice. Blood was collected throughout the study. At day 3 or day 6, fat pads were either directly analyzed (mRNA, ApN content) or cultured for up to 24 h (ApN secretion). The direct effect of leptin was also studied in 3T3-F442A adipocytes. Compared with L mice, ApN content of visceral or subcutaneous fat and ApN secretion by adipose explants were blunted in obese mice. Accordingly, plasma ApN levels of O mice were decreased by 50%. Leptin treatment of ob/ob mice increased ApN mRNAs, ApN content, and secretion from the visceral depot by 50-80%. Leptin also directly stimulated ApN mRNAs and secretion from 3T3-F442A adipocytes. After 6 days of treatment, plasma ApN of ob/ob mice increased 2.5-fold, a rise that did not occur in PF mice. Plasma resistin of T mice was barely decreased. Leptin treatment, but not mere calorie restriction, corrects plasma ApN in obese mice by restoring adipose tissue ApN concentrations and secretion, at least in part, via a direct stimulation of ApN gene expression. Such a treatment only minimally affects circulating resistin. ApN restoration could, in concert with leptin, contribute to the metabolic effects classically observed during leptin administration.  相似文献   

12.
We have recently shown that the activity of a synthetic peptide corresponding to amino acid residues 116-130 of secreted mouse leptin is contained in a restricted sequence at the amino terminus of the peptide, between residues 116-122 (Ser-Cys-Ser-Leu-Pro-Gln-Thr, OB3). Substitution of the Leu residue at position 4 of OB3 with its D-isomer ([D-Leu-4]-OB3) enhanced the ability of OB3 (1 mg/day, ip, 7 days) to reduce body weight gain, food and water intake, and serum glucose in female C57BL/6J ob/ob mice. In the present study, we have utilized a pair-feeding approach to demonstrate that the antihyperglycemic action of [D-Leu-4]-OB3 is not solely due to its effects on caloric intake. One group of female C57BL/6J ob/ob mice (n=6) was fed ad libitum, and two additional groups (n=6 per group) were allowed 3.0 g food/mouse daily, an amount previously determined to satisfy [D-Leu-4]-OB3-treated mice. At the end of the 7-day test period, vehicle-injected mice fed ad libitum were approximately 10% heavier than their initial body weights, while pair-fed mice injected with vehicle and [D-Leu-4]-OB3-treated mice lost 5% of their initial body weights. After 1 day of treatment, blood glucose was reduced by 20% in pair-fed vehicle-injected mice, and by 40% in mice given [D-Leu-4]-OB3. Food restriction reduced blood glucose throughout the 7-day study, but not to levels seen in wild-type nonobese C57BL/6J mice of the same sex and age. After 2 days of treatment with [D-Leu-4]-OB3, however, blood glucose was reduced to levels comparable to those seen in wild-type nonobese mice. [D-Leu-4]-OB3 also lowered serum insulin levels by 53% when compared to mice fed ad libitum. Neither pair-feeding nor [D-Leu-4]-OB3 treatment had any apparent effect on thermogenesis. These results suggest that [D-Leu-4]-OB3 exerts its effects on serum glucose not only by suppressing caloric intake, but also through a separate effect on glucose metabolism which may involve increased tissue sensitivity to insulin.  相似文献   

13.
Hormone-sensitive lipase (HSL) plays a crucial role in the hydrolysis of triacylglycerol and cholesteryl ester in various tissues including adipose tissues. To explore the role of HSL in the metabolism of fat and carbohydrate, we have generated mice lacking both leptin and HSL (Lep(ob/ob)/HSL(-/-)) by cross-breeding HSL(-/-) mice with genetically obese Lep(ob/ob) mice. Unexpectedly, Lep(ob/ob)/HSL(-/-) mice ate less food, gained less weight, and had lower adiposity than Lep(ob/ob)/HSL(+/+) mice. Lep(ob/ob)/HSL(-/-) mice had massive accumulation of preadipocytes in white adipose tissues with increased expression of preadipocyte-specific genes (CAAT/enhancer-binding protein beta and adipose differentiation-related protein) and decreased expression of genes characteristic of mature adipocytes (CCAAT/enhancer-binding protein alpha, peroxisome proliferator activator receptor gamma, and adipocyte determination and differentiation factor 1/sterol regulatory element-binding protein-1). Consistent with the reduced food intake, hypothalamic expression of neuropeptide Y and agouti-related peptide was decreased. Since HSL is expressed in hypothalamus, we speculate that defective generation of free fatty acids in the hypothalamus due to the absence of HSL mediates the altered expression of these orexigenic neuropeptides. Thus, deficiency of both leptin and HSL has unmasked novel roles of HSL in adipogenesis as well as in feeding behavior.  相似文献   

14.
Homozygous obese db/db (BKS-Lepr(db) and ob/ob (B6-Lep(ob)) mice were treated for 14 days with a continuous infusion of a fat emulsion (controls) or loaded with oleoyl-estrone at doses of 12.5 and 50 nmol/g x d using surgically inserted osmotic minipumps. Treatment with oleoyl-estrone resulted in a marked decrease in body weight in both strains, compared with the unchecked growth of controls. In db/db mice, plasma urea and insulin, as well as liver lipid decreased with treatment. In ob/ob mice, the effect on insulin was more marked, in parallel with higher plasma lipids pointing to increased fat mobilisation. The results suggest that oleoyl-estrone effects on body fat reserves and insulin resistance are not mediated by leptin, since ob/ob mice lack this hormone and in the db/db it is present but cannot induce effects because of defective leptin receptors; in both cases oleoyl-estrone treatment lowers body weight.  相似文献   

15.
1. Plasma glucose and insulin responses to bombesin were examined in 12-15-week-old 12 hr fasted lean and genetically obese hyperglycaemic (ob/ob) mice. 2. Bombesin (1 mg/kg ip) produced a prompt but transient increase of plasma insulin in lean mice (maximum increase of 50% at 5 min), and a more slowly generated but protracted insulin response in ob/ob mice (maximum increase of 80% at 30 min). Plasma glucose concentrations of both groups of mice were increased by bombesin (maximum increases of 40 and 48% respectively in lean and ob/ob mice at 15 min). 3. When administered with glucose (2 g/kg ip), bombesin (1 mg/kg ip) rapidly increased insulin concentrations of lean and ob/ob mice (maximum increases of 39 and 63% respectively at 5 min). Bombesin did not significantly alter the rise of plasma glucose after exogenous glucose administration to these mice. 4. The results indicate that bombesin exerts an insulin-releasing effect in lean and ob/ob mice. The greater insulin-releasing effect in ob/ob mice renders bombesin a possible component of the overactive entero-insular axis in the ob/ob mutant, especially if it acts within the islets as a neurotransmitter or paracrine agent.  相似文献   

16.
The intestines of obese hyperglycaemic (ob/ob) mice contain greatly increased amounts of glucagon-like immunoreactive peptides. To investigate their role in the increased activity of the entero-insular axis of these mice, the insulin-releasing effect of glucagon-like peptide-1 (GLP-1) was examined in 24 hour fasted 12-15 weeks old ob/ob mice under conditions of basal and elevated glycaemia. Compared with glucagon (100 micrograms/kg ip), which produce an approximately 3-fold increase in basal plasma glucose and insulin concentrations, GLP-1 (100 micrograms/kg ip) produce a very small (less than 1 fold) increase in plasma insulin, with no significant change in plasma glucose. The insulin-releasing effect of glucagon, but not GLP-1 was increased by administration in combination with glucose (2 g/kg ip). The results indicate that GLP-1, which exhibits considerable sequence homology with glucagon, exerts only a weak insulin-releasing effect without a significant hyperglycaemic effect in ob/ob mice. Thus GLP-1 is unlikely to be an important endocrine component of the two over-active entero-insular axis in ob/ob mice.  相似文献   

17.
Leptin deficiency produces a phenotype of obesity, diabetes, and infertility in the ob/ob mouse. In humans, leptin deficiency occurs in some cases of congenital obesity and in lipodystrophic disorders characterized by reduced adipose tissue and insulin resistance. Cutaneous gene therapy is considered an attractive potential method to correct circulating protein deficiencies, since gene-transferred human keratinocytes can produce and secrete gene products with systemic action. However, no studies showing correction of a systemic defect have been reported. We report the successful correction of leptin deficiency using cutaneous gene therapy in the ob/ob mouse model. As a feasibility approach, skin explants from transgenic mice overexpressing leptin were grafted on immunodeficient ob/ob mice. One month later, recipient mice reached body weight values of lean animals. Other biochemical and clinical parameters were also normalized. In a second human gene therapy approach, a retroviral vector encoding both leptin and EGFP cDNAs was used to transduce HK and, epithelial grafts enriched in high leptin-producing HK were transplanted to immunosuppressed ob/ob mice. HK-derived leptin induced body weight reduction after a drop in blood glucose and food intake. Leptin replacement through genetically engineered HK grafts provides a valuable therapeutic alternative for permanent treatment of human leptin deficiency conditions.  相似文献   

18.
Glucagon-like peptide-1(7-36)amide (tGLP-1) has attracted considerable potential as a possible therapeutic agent for type 2 diabetes. However, tGLP-1 is rapidly inactivated in vivo by the exopeptidase dipeptidyl peptidase IV (DPP IV), thereby terminating its insulin releasing activity. The present study has examined the ability of a novel analogue, His(7)-glucitol tGLP-1 to resist plasma degradation and enhance the insulin-releasing and antihyperglycemic activity of the peptide in 20-25-week-old obese diabetic ob/ob mice. Degradation of native tGLP-1 by incubation at 37 degrees C with obese mouse plasma was clearly evident after 3 h (35% intact). After 6 h, more than 87% of tGLP-1 was converted to GLP-1(9-36)amide and two further N-terminal fragments, GLP-1(7-28) and GLP-1(9-28). In contrast, His(7)-glucitol tGLP-1 was completely resistant to N-terminal degradation. The formation of GLP-1(9-36)amide from native tGLP-1 was almost totally abolished by addition of diprotin A, a specific inhibitor of DPP IV. Effects of tGLP-1 and His(7)-glucitol tGLP-1 were examined in overnight fasted obese mice following i.p. injection of either peptide (30 nmol/kg) together with glucose (18 mmol/kg) or in association with feeding. Plasma glucose was significantly lower and insulin response greater following administration of His(7)-glucitol tGLP-1 as compared to glucose alone. Native tGLP-1 lacked antidiabetic effects under the conditions employed, and neither peptide influenced the glucose-lowering action of exogenous insulin (50 units/kg). Twice daily s.c. injection of ob/ob mice with His(7)-glucitol tGLP-1 (10 nmol/kg) for 7 days reduced fasting hyperglycemia and greatly augmented the plasma insulin response to the peptides given in association with feeding. These data demonstrate that His(7)-glucitol tGLP-1 displays resistance to plasma DPP IV degradation and exhibits antihyperglycemic activity and substantially enhanced insulin-releasing action in a commonly used animal model of type 2 diabetes.  相似文献   

19.
Liver X receptor (LXR) agonists have been proposed to act as anti-diabetic drugs. However, pharmacological LXR activation leads to severe hepatic steatosis, a condition usually associated with insulin resistance and type 2 diabetes mellitus. To address this apparent contradiction, lean and ob/ob mice were treated with the LXR agonist GW-3965 for 10 days. Insulin sensitivity was assessed by hyperinsulinemic-euglycemic clamp studies. Hepatic glucose production (HGP) and metabolic clearance rate (MCR) of glucose were determined with stable isotope techniques. Blood glucose and hepatic and whole body insulin sensitivity remained unaffected upon treatment in lean mice, despite increased hepatic triglyceride contents (61.7 +/- 7.2 vs. 12.1 +/- 2.0 nmol/mg liver, P < 0.05). In ob/ob mice, LXR activation resulted in lower blood glucose levels and significantly improved whole body insulin sensitivity. GW-3965 treatment did not affect HGP under normo- and hyperinsulinemic conditions, despite increased hepatic triglyceride contents (221 +/- 13 vs. 176 +/- 19 nmol/mg liver, P < 0.05). Clamped MCR increased upon GW-3965 treatment (18.2 +/- 1.0 vs. 14.3 +/- 1.4 ml x kg(-1) x min(-1), P = 0.05). LXR activation increased white adipose tissue mRNA levels of Glut4, Acc1 and Fasin ob/ob mice only. In conclusion, LXR-induced blood glucose lowering in ob/ob mice was attributable to increased peripheral glucose uptake and metabolism, physiologically reflected in a slightly improved insulin sensitivity. Remarkably, steatosis associated with LXR activation did not affect hepatic insulin sensitivity.  相似文献   

20.
Our previous works demonstrated that leptin inhibits galactose absorption in rat and mice intestinal rings. Here, we have studied the effect of exogenous leptin on intestinal galactose absorption in the genetically obese db/db (leptin-resistant) and ob/ob (leptin-deficient) mice. Assays were performed by incubating the intestinal rings in saline solution containing 5 mM galactose in the absence or presence of 0.2 or 0.4 nM leptin. Basal galactose uptake was similar in the wild-type and the two obese groups. Contrarily to what happens in wild-type mice, leptin increased galactose uptake in db/db animals; since these mice lack the functional long leptin receptor, the measured effect may be due to the short receptor signaling. In the ob/ob mice, 0.2 nM leptin also increased galactose absorption whereas 0.4 nM did not have any effect, suggesting that in the genetically obese animals the expression and regulation of leptin receptors may be altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号