首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homozygous brachymorphic (bm/bm) mice are characterized by disproportionately short stature. Newborn bm/bm epiphyseal cartilages are shorter than normal although the cells in the different zones of growth are relatively well organized. The extracellular matrix reacts poorly with stains specific for sulfated glycosaminoglycans. The ultrastructural appearance of the cartilage matrix indicates normal collagen fibrils; however, proteoglycan aggregate granules are smaller than normal and are present in reduced numbers, particularly in the columnar and hypertrophic zones of the growth plate. In addition, a prominent network of fine filaments, which are extractable in 4 M guanidine hydrochloride, are present in the bm/bm cartilage matrix. These findings suggest that a defect affecting the proteoglycan component of cartilage occurs in bm/bm mice.  相似文献   

2.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

3.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   

4.
Type X collagen is a short chain, non-fibrilforming collagen synthesized primarily by hypertrophic chondrocytes in the growth plate of fetal cartilage. Previously, we have also identified type X collagen in the extracellular matrix of fibrillated, osteoarthritic but not in normal articular cartilage using biochemical and immunohistochemical techniques (von der Mark et al. 1992 a). Here we compare the expression of type X with types I and II collagen in normal and degenerate human articular cartilage by in situ hybridization. Signals for cytoplasmic α1(X) collagen mRNA were not detectable in sections of healthy adult articular cartilage, but few specimens of osteoarthritic articular cartilage showed moderate expression of type X collagen in deep zones, but not in the upper fibrillated zone where type X collagen was detected by immunofluorescence. This apparent discrepancy may be explained by the relatively short phases of type X collagen gene activity in osteoarthritis and the short mRNA half-life compared with the longer half-life of the type X collagen protein. At sites of newly formed osteophytic and repair cartilage, α1(X) mRNA was strongly expressed in hypertrophic cells, marking the areas of endochondral bone formation. As in hypertrophic chondrocytes in the proliferative zone of fetal cartilage, type X collagen expression was also associated with strong type II collagen expression.  相似文献   

5.
6.
Type X collagen alterations in rachitic chick epiphyseal growth cartilage   总被引:2,自引:0,他引:2  
We examined collagens of both normal and vitamin D-deficient chick epiphyseal growth cartilage. Special emphasis was placed on the study of Type X collagen, a recently described product of hypertrophic chondrocytes. Scanning electron microscopy of the epiphyseal growth cartilage of vitamin D-deficient chickens showed an enlarged growth cartilage with a disorganized extracellular matrix. The cartilage collagens were solubilized by proteolytic digestion and disulfide bond reduction of both normal and rachitic growth tissues. Sequential extraction with neutral salt and acetic acid buffers followed by pepsin digestion at 4 degrees C solubilized about 12% of normal tissues and about 7% of collagen from rachitic growth cartilage. Treatment of the pepsin-resistant collagens with neutral salt-dithiothreitol buffer under nondenaturing conditions and a subsequent pepsin digestion increased the yield of solubilized collagen to greater than 95% of the total tissue collagen. Results of the biochemical studies showed a marked increase in the relative proportion of Type X collagen (from 5.6 to 27.9%), a corresponding decrease in the proportions of Types II and IX collagens, and a moderate increase in Type XI collagen in rachitic cartilage. Amino acid analysis indicated that there were no differences in the Types II and X collagens of normal and rachitic cartilage. However, an abnormality in the relative proportions of the CNBr peptides of Type X collagen was detected in the rachitic cartilage. We suggest that the increase in collagen in the rachitic state may reflect increased levels of Type X collagen synthesis by cells in the hypertrophic region. It is likely that in rickets the overproduction of Type X collagen may be a compensatory mechanism by which the hypertrophic chondrocyte attempts to provide a maximum area of calcifiable matrix for the calcium-depleted serum.  相似文献   

7.
8.
The fate of hypertrophic chondrocytes during endochondral ossification remains controversial. It has long been thought that the calcified cartilage is invaded by blood vessels and that new bone is deposited on the surface of the eroded cartilage by newly arrived cells. The present study was designed to determine whether hypertrophic chondrocytes were destined to die or could survive to participate in new bone formation. In a rabbit experiment, a membrane filter with a pore size of 1 µm was inserted in the middle of the hypertrophic zone of the distal growth plate of ulna. In 33 of 37 animals, vascular invasion was successfully interposed by the membrane filter. During 8 days, the cartilage growth plate was enlarged, making the thickness 3-fold greater than that of the nonoperated control side. Histological examination demonstrated that the hypertrophic zone was exclusively elongated. At the terminal end of the growth plate, hypertrophic chondrocytes extruded from their territorial matrix into the open cavity on the surface of the membrane filter. The progenies of hypertrophic chondrocytes (PHCs) were PCNA positive and caspase-3 negative. In situ hybridization studies demonstrated that PHCs did not express cartilage matrix proteins anymore but expressed bone matrix proteins. Immunohistochemical studies also demonstrated that the new matrix produced by PHCs contained type I collagen, osteonectin, and osteocalcin. Based on these results, we concluded that hypertrophic chondrocytes switched into bone-forming cells after vascular invasion was interposed in the normal growth plate.  相似文献   

9.
Homozygous brachymorphic (bm/bm) mice have a disproportionately short stature. Previous studies have shown that the cartilage proteoglycan is undersulfated as a result of decreased 3′-phosphoadenosine 5′-phosphosulfate (PAPS) levels. In the studies reported here, PAPS synthesizing activity was found to be decreased in both skin fibroblasts and prechondrogenic mesenchyme, but sulfation of glycosaminoglycan was normal in those tissues unless glycosaminoglycan synthesis was enhanced by β-d-xyloside. Furthermore, undersulfation was correlated with increased proteoglycan synthesis as the limb mesenchyme cultures underwent chondrogenesis, and sulfation proceeded in an “all or none” manner. These observations demonstrate that the molecular defect in bm/bm mice is not restricted to cartilage, but is manifested there because of the large amount of chondroitin sulfate synthesized.  相似文献   

10.
Immunohistochemical localization of type I and type II collagens was examined in the rat mandibular condylar cartilage (as the secondary cartilage) and compared with that in the tibial growth plate (as the primary cartilage) using plastic embedded tissues. In the condylar cartilage, type I collagen was present not only in the extracellular matrix (ECM) of the fibrous, proliferative, and transitional cell layers, but also in the ECM of the maturative and hypertrophic cell layers. Type II collagen was present in the ECM of the maturative and hypertrophic cell layers. In the growth plate, type II collagen was present in the ECM of whole cartilaginous layers; type I collagen was not present in the cartilage but in the perichondrium and the bone matrices. These results indicate that differences exist in the components of the ECM between the primary and secondary cartilages. It is suggested that these two tissues differ in the developmental processes and/or in the reactions to their own local functional needs.  相似文献   

11.
Summary Carbonic anhydrase isoenzymes I and II have been localized in human bone and cartilage. Osteoclasts are strongly positive for carbonic anhydrase II but very little if any reaction is observed for carbonic anhydrase I. In tendon giant cell tumor osteoclastlike-giant cells contained high amounts of carbonic anhydrase II suggesting the close relation of these cells to normal osteoclasts. In growth plate cartilage strong staining was obtained in late proliferative and hypertrophic chondroxytes as well as in extracellular matrix of hypertrophic zone also only with anti-human carbonic anhydrase II.  相似文献   

12.
Summary Immunohistochemical localization of type I and type II collagens was examined in the rat mandibular condylar cartilage (as the secondary cartilage) and compared with that in the tibial growth plate (as the primary cartilage) using plastic embedded tissues. In the condylar cartilage, type I collagen was present not only in the extracellular matrix (ECM) of the fibrous, proliferative, and transitional cell layers, but also in the ECM of the maturative and hypertrophic cell layers. Type II collagen was present in the ECM of the maturative and hypertrophic cell layers. In the growth plate, type II collagen was present in the ECM of whole cartilaginous layers; type I collagen was not present in the cartilage but in the perichondrium and the bone matrices. These results indicate that differences exist in the components of the ECM between the primary and secondary cartilages. It is suggested that these two tissues differ in the developmental processes and/or in the reactions to their own local functional needs.  相似文献   

13.
Mandibular condyles of fetal mice 19 to 20 days in utero comprising clean cartilage and its perichondrium were cultured for up to 14 days, and their capacity to develop osteoid and to mineralize in vitro was examined. After 3 days in culture the cartilage of the mandibular condyle appeared to have lost its inherent structural characteristics, including its various cell layers: chondroprogenitor, chondroblastic, and hypertrophic cells. At that time interval no chondroblasts could be seen; instead, most of the cartilage consisted of hypertrophic chondrocytes. By that time, the surrounding perichondrium, which contains pluripotential mesenchymal stem cells, revealed the first signs of extracellular matrix enclosing type I collagen, bone alkaline phosphatase, osteonection, fibronectin, and bone sialoprotein as demonstrated by immunofluorescent techniques. Electron microscopic examinations of the newly formed matrix revealed foci of mineralization within and along collagen fibers as is normally observed during bone development. The composition of the latter mineral deposits resembled calcium pyrophosphate crystals. Following 14 days in culture larger portions of the condyle revealed signs of osseous matrix, yet the tissue reacted positively for type II collagen. Hence, the condylar cartilage, a genuine representative of secondary-type cartilage, elaborated in vitro a unique type of bone that would be most appropriately defined as chondroid bone. Biochemical assays indicated that the de novo formation of chondroid bone was correlated with changes in alkaline phosphatase activity and 45Ca incorporation. The findings of the present study imply that mesenchymal stem cells that ordinarily differentiate into cartilage possess the capacity to differentiate into osteogenic cells and form chondroid bone.  相似文献   

14.
We used the egg avidin gold complex as a polycationic probe for the localization of negatively charged sites in the secretory granules of mouse mast cells. We compared the binding of this reagent to mast cell granules in wild-type mice and in congenic brachymorphic mice in which mast cell secretory granules contained undersulfated proteoglycans. We localized anionic sites by post-embedding labeling of thin sections of mouse skin and tongue tissues fixed in Karnovsky’s fixative and OsO4 and embedded in Araldite. Transmission electron microscopy revealed that the mast cell granules of bm/bm mice had a lower optical density than those of wild-type mice (P<0.001) and a lower avidin gold binding density (by approximately 50%, P<0.001). The latter result provided additional evidence that the contents of mast cell granules in bm/bm mice were less highly sulfated than in those of wild-type mice. In both wild-type and bm/bm mast cells, the distribution of granule equivalent volumes was multimodal, but the unit granule volume was approximately 19% lower in bm/bm cells than in wild-type cells (P<0.05). Thus, bm/bm mast cells develop secretory granules that differ from those of wild-type mice in exhibiting a lower optical density and slightly smaller unit granules, however the processes that contribute to granule maturation and granule-granule fusion in mast cells are operative in bm/bm cells.  相似文献   

15.
The C-propeptide of type II procollagen has previously been implicated in cartilage calcification. To further characterize this propeptide, we have investigated its molecular status and intracellular distribution in bovine fetal growth plate chondrocytes, particularly within the calcifying zone, using cell isolation, Western blotting, and localization with immunofluorescence and immunogold techniques. We found that in all cells freshly isolated by collagenase digestion the C-propeptide was a component of type II pro-alpha chains. No free C-propeptide was detected intracellularly. In situ localization of the C-propeptide by immunostaining employing immunofluorescence revealed the presence of procollagen in most growth plate cells, staining being most intense in hypertrophic cells. In the latter, large dilations of the rough endoplasmic reticulum were observed. These were not found in proliferating cells and had an approximate diameter of 5 microns. With immunogold localization these, together with Golgi-derived secretory granules, stained for the C-propeptide. These combined results suggest that in all cells of the growth plate the C-propeptide is a constituent part of type II collagen pro-alpha chains, and that it is usually segregated in the rough endoplasmic reticulum at a time when, according to other studies, collagen synthesis ceases in the lower hypertrophic zone and calcification of the extracellular matrix ensues. This suggests that the intracellular translocation of type II collagen pro-alpha chains may change in hypertrophic cells at this time.  相似文献   

16.
Members of the TGF-β superfamily are important regulators of skeletal development. TGF-βs signal through heteromeric type I and type II receptor serine/threonine kinases. When over-expressed, a cytoplasmically truncated type II receptor can compete with the endogenous receptors for complex formation, thereby acting as a dominant-negative mutant (DNIIR). To determine the role of TGF-βs in the development and maintenance of the skeleton, we have generated transgenic mice (MT-DNIIR-4 and -27) that express the DNIIR in skeletal tissue. DNIIR mRNA expression was localized to the periosteum/perichondrium, syno-vium, and articular cartilage. Lower levels of DNIIR mRNA were detected in growth plate cartilage. Transgenic mice frequently showed bifurcation of the xiphoid process and sternum. They also developed progressive skeletal degeneration, resulting by 4 to 8 mo of age in kyphoscoliosis and stiff and torqued joints. The histology of affected joints strongly resembled human osteo-arthritis. The articular surface was replaced by bone or hypertrophic cartilage as judged by the expression of type X collagen, a marker of hypertrophic cartilage normally absent from articular cartilage. The synovium was hyperplastic, and cartilaginous metaplasia was observed in the joint space.

We then tested the hypothesis that TGF-β is required for normal differentiation of cartilage in vivo. By 4 and 8 wk of age, the level of type X collagen was increased in growth plate cartilage of transgenic mice relative to wild-type controls. Less proteoglycan staining was detected in the growth plate and articular cartilage matrix of transgenic mice. Mice that express DNIIR in skeletal tissue also demonstrated increased Indian hedgehog (IHH) expression. IHH is a secreted protein that is expressed in chondrocytes that are committed to becoming hypertrophic. It is thought to be involved in a feedback loop that signals through the periosteum/ perichondrium to inhibit cartilage differentiation. The data suggest that TGF-β may be critical for multifaceted maintenance of synovial joints. Loss of responsiveness to TGF-β promotes chondrocyte terminal differentiation and results in development of degenerative joint disease resembling osteoarthritis in humans.

  相似文献   

17.
18.
Matrix vesicles have a critical role in the initiation of mineral deposition in skeletal tissues, but the ways in which they exert this key function remain poorly understood. This issue is made even more intriguing by the fact that matrix vesicles are also present in nonmineralizing tissues. Thus, we tested the novel hypothesis that matrix vesicles produced and released by mineralizing cells are structurally and functionally different from those released by nonmineralizing cells. To test this hypothesis, we made use of cultures of chick embryonic hypertrophic chondrocytes in which mineralization was triggered by treatment with vitamin C and phosphate. Ultrastructural analysis revealed that both control nonmineralizing and vitamin C/phosphatetreated mineralizing chondrocytes produced and released matrix vesicles that exhibited similar round shape, smooth contour, and average size. However, unlike control vesicles, those produced by mineralizing chondrocytes had very strong alkaline phosphatase activity and contained annexin V, a membrane-associated protein known to mediate Ca2+ influx into matrix vesicles. Strikingly, these vesicles also formed numerous apatite-like crystals upon incubation with synthetic cartilage lymph, while control vesicles failed to do so. Northern blot and immunohistochemical analyses showed that the production and release of annexin V-rich matrix vesicles by mineralizing chondrocytes were accompanied by a marked increase in annexin V expression and, interestingly, were followed by increased expression of type I collagen. Studies on embryonic cartilages demonstrated a similar sequence of phenotypic changes during the mineralization process in vivo. Thus, chondrocytes located in the hypertrophic zone of chick embryo tibial growth plate were characterized by strong annexin V expression, and those located at the chondro–osseous mineralizing border exhibited expression of both annexin V and type I collagen. These findings reveal that hypertrophic chondrocytes can qualitatively modulate their production of matrix vesicles and only when induced to initiate mineralization, will release mineralization-competent matrix vesicles rich in annexin V and alkaline phosphatase. The occurrence of type I collagen in concert with cartilage matrix calcification suggests that the protein may facilitate crystal growth after rupture of the matrix vesicle membrane; it may also offer a smooth transition from mineralized type II/type X collagen-rich cartilage matrix to type I collagen-rich bone matrix.  相似文献   

19.
Immunohistochemical localization of collagen types I, II, and X, aggrecan, versican, dentin matrix protein (DMP)-1, martix extracellular phosphoprotein (MEPE) were performed for Meckel’s cartilage, cranial base cartilage, and mandibular condylar cartilage in human midterm fetuses; staining patterns within the condylar cartilage were compared to those within other cartilaginous structures. Mandibular condylar cartilage contained aggrecan; it also had more type I collagen and a thicker hypertrophic cell layer than the other two types of cartilage; these three characteristics are similar to those of the secondary cartilage of rodents. MEPE immunoreactivity was first evident in the cartilage matrix of all types of cartilage in the human fetuses and in Meckel’s cartilage of mice and rats. MEPE immunoreactivity was enhanced in the deep layer of the hypertrophic cell layer and in the cartilaginous core of the bone trabeculae in the primary spongiosa. These results indicated that MEPE is a component of cartilage matrix and may be involved in cartilage mineralization. DMP-1 immunoreactivity first became evident in human bone lacunae walls and canaliculi; this pattern of expression was comparable to the pattern seen in rodents. In addition, chondroid bone was evident in the mandibular (glenoid) fossa of the temporal bone, and it had aggrecan, collagen types I and X, MEPE, and DMP-1 immunoreactivity; these findings indicated that chondroid bone in this region has phenotypic expression indicative of both hypertrophic chondrocytes and osteocytes.Key words: condylar cartilage, human fetus, extracellular matrix, MEPE, DMP-1  相似文献   

20.
Bone growth retardation in mouse embryos expressing human collagenase 1   总被引:2,自引:0,他引:2  
Cellular growth and differentiation are readouts of multiple signaling pathways from the intercellular and/or extracellular milieu. The extracellular matrix through the activation of cellular receptors transmits these signals. Therefore, extracellular matrix proteolysis could affect cell fate in a variety of biological events. However, the biological consequence of inadequate extracellular matrix degradation in vivo is not clear. We developed a mouse model expressing human collagenase (matrix metalloproteinase-1, MMP-1) under the control of Col2a1 promoter. The mice showed significant growth retardation during embryogenesis and a loss of the demarcation of zonal structure and columnar array of the cartilage. Immunological examination revealed increased degradation of type II collagen and upregulation of fibronectin and alpha(5)-integrin subunit in the transgenic cartilage. The resting zone and proliferating zone of the growth plate cartilage exhibited a simultaneous increase in bromodeoxyuridine (BrdU)-incorporated proliferating cells and terminal deoxynucleotidyl transferase-mediated X-dUTP nick-end labeling-positive apoptotic cells, respectively. Chondrocyte differentiation was not disturbed in the transgenic mice as evidenced by normal expression of the Ihh and type X collagen expression. These data demonstrate that type II collagen proteolysis is an important determinant for the skeletal outgrowth through modulation of chondrocyte survival and cartilagenous growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号