首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structurally homologous mononuclear iron and manganese superoxide dismutases (FeSOD and MnSOD, respectively) contain a highly conserved glutamine residue in the active site which projects toward the active-site metal centre and participates in an extensive hydrogen bonding network. The position of this residue is different for each SOD isoenzyme (Q69 in FeSOD and Q146 in MnSOD of Escherichia coli). Although site-directed mutant enzymes lacking this glutamine residue (FeSOD[Q69G] and MnSOD[Q146A]) demonstrated a higher degree of selectivity for their respective metal, they showed little or no activity compared with wild types. FeSOD double mutants (FeSOD[Q69G/A141Q]), which mimic the glutamine position in MnSOD, elicited 25% the activity of wild-type FeSOD while the activity of the corresponding MnSOD double mutant (MnSOD[G77Q/Q146A]) increased to 150% (relative to wild-type MnSOD). Both double mutants showed reduced selectivity toward their metal. Differences exhibited in the thermostability of SOD activity was most obvious in the mutants that contained two glutamine residues (FeSOD[A141Q] and MnSOD[G77Q]), where the MnSOD mutant was thermostable and the FeSOD mutant was thermolabile. Significantly, the MnSOD double mutant exhibited a thermal-inactivation profile similar to that of wild-type FeSOD while that of the FeSOD double mutant was similar to wild-type MnSOD. We conclude therefore that the position of this glutamine residue contributes to metal selectivity and is responsible for some of the different physicochemical properties of these SODs, and in particular their characteristic thermostability.  相似文献   

2.
The nitrogen-fixing filamentous cyanobacterium Nostoc PCC 7120 (formerly named Anabaena PCC 7120) possesses two genes for superoxide dismutase, a unique membrane-associated manganese superoxide dismutase (MnSOD) and a soluble iron superoxide dismutase (FeSOD). A phylogenetic analysis of FeSODs shows that cyanobacterial enzymes form a well separated cluster with filamentous species found in one subcluster and unicellular species in the other. Activity staining, inhibition patterns, and immunogold labeling show that FeSOD is localized in the cytosol of vegetative cells and heterocysts (nitrogenase containing specialized cells formed during nitrogen-limiting conditions). The recombinant Nostoc FeSOD is a homodimeric, acidic enzyme exhibiting the characteristic iron peak at 350 nm in its ferric state, an almost 100% occupancy of iron per subunit, a specific activity using the ferricytochrome assay of (2040 +/- 90) units mg(-1) at pH 7.8, and a dissociation constant Kd of the azide-FeSOD complex of 2.1 mM. Using stopped flow spectroscopy it was shown that the decay of superoxide in the presence of various FeSOD concentrations is first-order in enzyme concentration allowing the calculation of the catalytic rate constants, which increase with decreasing pH: 5.3 x 10(9) M(-1) s(-1) (pH 7) to 4.8 x 10(6) M(-1) s(-1) (pH 10). FeSOD and MnSOD complement each other to keep the superoxide level low in Nostoc PCC 7120, which is discussed with respect to the fact that Nostoc PCC 7120 exhibits oxygenic photosynthesis and oxygen-dependent respiration within a single prokaryotic cell and also has the ability to form differentiated cells under nitrogen-limiting conditions.  相似文献   

3.
The synthesis of Mn- and FeSODs in response to temperature changes was examined in strains of Escherichia coli with different mutations in sod and htpR genes. Growth at or shift to elevated temperatures induced FeSOD but not MnSOD. The induction of FeSOD by heat was inhibited by chloramphenicol and was independent of the heat shock (htpR-controlled) regulon. FeSOD was more stable at 42 degrees C than was MnSOD.  相似文献   

4.
5.
The Escherichia coli, Bacillus stearothermophilus, and human manganese-containing superoxide dismutases (MnSODs) and the E. coli iron-containing superoxide dismutase (FeSOD) are extensively inactivated by treatment with phenylglyoxal, an arginine-specific reagent. Arg-189, the only conserved arginine in the primary sequences of these four enzymes, is also conserved in the three additional FeSODs and five of the six additional MnSODs sequenced to date. The only exception is Saccharomyces cerevisiae MnSOD, in which it is conservatively replaced by lysine. Treatment of S. cerevisiae MnSOD with phenylglyoxal under the same conditions used for the other SODs gives very little inactivation. However, treatment with low levels of 2,4,6-trinitrobenzenesulfonate (TNBS) or acetic anhydride, two lysine-selective reagents that cause a maximum of 60-80% inactivation of the other four SODs, gives complete inactivation of the yeast enzyme. Total inactivation of yeast MnSOD with TNBS correlates with the modification of approximately five lysines per subunit, whereas six to seven acetyl groups per subunit are incorporated on complete inactivation with [14C]-acetic anhydride. It appears that the positive charge contributed by residue 189, lysine in yeast MnSOD and arginine in all other SODs, is critical for the catalytic function of MnSODs and FeSODs.  相似文献   

6.
The composition of antioxidant enzymes, especially superoxide dismutase (SOD), was studied in one nontransgenic and three transgenic lines of nodulated alfalfa plants. Transgenic lines overproduced MnSOD in the mitochondria of nodules and leaves (line 1-10), MnSOD in the chloroplasts (line 4-6), and FeSOD in the chloroplasts (line 10-7). In nodules of line 10-7, the absence of transgene-encoded FeSOD activity was due to a lack of mRNA, whereas in nodules of line 4-6 the absence of transgene-encoded MnSOD activity was due to enzyme inactivation or degradation. Transgenic alfalfa showed a novel compensatory effect in the activities of MnSOD (mitochondrial) and FeSOD (plastidic) in the leaves, which was not caused by changes in the mRNA levels. These findings imply that SOD activity in plant tissues and organelles is regulated, at least partially, at the posttranslational level. All four lines had low CuZnSOD activities and an abundant FeSOD isozyme, especially in nodules, indicating that FeSOD performs important antioxidant functions other than the scavenging of superoxide radicals generated in photosynthesis. This was confirmed by the detection of FeSOD cDNAs and proteins in nodules of other legumes such as cowpea, pea, and soybean. The cDNA encoding alfalfa nodule FeSOD was characterized and the deduced protein found to contain a plastid transit peptide. A comparison of sequences and other properties reveals that there are two types of FeSODs in nodules.  相似文献   

7.
《Free radical research》2013,47(1):279-285
We have previously shown (C.L. Borders, Jr. el al., (1989) Archives of Biochemistry and Eiaphysics. 268, 74–80) that the iron-containing (FeSOD) and manganese-containing (MnSOD) superoxide dismutases from Eschericliia coli are extensively (≥98%) inactivated by treatment with phenylglyoxal. an arginine-specific reagent. Examination of the published primary sequences of these two enzymes shows that Arg-189 is the only conserved arginine. This arginine is also conserved in the three additional FeSODs and seven of the eight additional MnSODs sequenced to date, with the only exception king the MnSOD from Saccharomyces cerevisiae, in which it is conservatively replaced by lysine. Treatment of S. cerevisiae MnSOD with phenylglyoxal under the same conditions used for the E. coli enzymes gives very little inactivation. However, treatment with low levels of 2.4.6-trinitrobenzenesulfonate (TNBS) and acetic anhydride, two lysine-selective reagents that cause a maximum of 65–80% inactivation of the E. coli SODs, gives complete inactivation of the yeast enzyme. Total inactivation of yeast MnSOD with TNBS correlates with the modification of approximately 5 lysines per subunit, whereas 6–7 lysines per subunit are acylated with acetic anhydride on complete inactivation. It appears that the positive charge contributed by residue 189. lysine in yeast MnSOD and arginine in all other SODs. may be critical for the catalytic activity or MnSODs and FeSODs.  相似文献   

8.
The 2.1-A resolution crystal structure of native uncomplexed iron superoxide dismutase (EC 1.15.1.1) from Pseudomonas ovalis was solved and refined to a final R factor of 24%. The dimeric structure contains one catalytic iron center per monomer with an asymmetric trigonal-bipyramidal coordination of protein ligands to the metal. Each monomer contains two domains, with the trigonal ligands (histidines 74 and 160; aspartate 156) contributed by the large domain and stabilized by an extended hydrogen-bonded network, including residues from opposing monomers. The axial ligand (histidine 26) is found on the small domain and does not participate extensively in the stabilizing H-bond network. The open axial coordination position of the iron is devoid of bound water molecules or anions. The metal is located 0.5 A out of the plane of the trigonal ligands toward histidine 26, providing a slightly skewed coordination away from the iron binding site. The molecule contains a glutamine residue in the active site which is conserved between all iron enzymes sequenced to data but which is conserved among all manganese SODs at a separate position in the sequence. This residue shows the same structural interactions in both cases, implying that iron and manganese SODs are second-site revertants of one another.  相似文献   

9.
The superoxide dismutase produced by Streptococcus mutans OMZ176 during aerobic growth in a chemically defined medium (modified FMC) that was treated with Chelex 100 (to lower trace metal contamination) and supplemented with high purity manganese was purified (162-fold) by heat treatment, ammonium sulfate precipitation, and chromatofocusing chromatography. The superoxide dismutase produced during aerobic growth in the same medium, but without manganese and supplemented with high purity iron, was similarly purified (220-fold). The molecular masses of each holoenzyme were approximately 43,000 with a subunit mass of 20,700, indicating that the enzymes were dimers of two equally sized subunits. The superoxide dismutase from manganese-grown cells was a manganese enzyme (MnSOD) containing 1.2 atoms of manganese and 0.25 atoms of iron/subunit. The superoxide dismutase from iron-grown cells was an iron enzyme (FeSOD) containing 0.07 atoms of manganese and 0.78 atoms of iron/subunit. The amino acid compositions of the MnSOD and the FeSOD were virtually identical, and their amino-terminal sequences were identical through the first 22 amino acids. Dialysis of the FeSOD with o-phenanthroline and sodium ascorbate generated aposuperoxide dismutase with 94% loss of activity; subsequent dialysis of apoenzyme with either manganese sulfate or ferrous sulfate reconstituted activity (recoveries of 37 and 30%, respectively). Electrophoretic determination of cytoplasmic radioiron distribution indicated that (during aerobic growth) manganese prevented insertion of iron into superoxide dismutase, although the iron levels of at least two other cytoplasmic fractions were not altered by manganese. Therefore, S. mutans used the same aposuperoxide dismutase to form either FeSOD or MnSOD, depending upon which metal was available in the culture medium. Such "cambialistic" enzymes (those capable of making a cofactor substitution) may represent a previously unrecognized family of superoxide dismutases.  相似文献   

10.
The three-dimensional structure of the manganese-dependent superoxide dismutase (MnSOD) from Escherichia coli has been determined by X-ray crystallography at 2.1?Å resolution. The protein crystallizes with two homodimers in the asymmetric unit, and a model comprising 6528 protein atoms (residues 1–205 of all four monomers), four manganese ions and 415 water molecules has been refined to an R factor of 0.188 (R free 0.218). The structure shows a high degree of similarity with other MnSOD and FeSOD enzymes. The Mn centres are 5-coordinate, trigonal bipyramidal, with His26 and a solvent molecule, probably a hydroxide ion, as apical ligands, and His81, Asp167 and His171 as equatorial ligands. The coordinated solvent molecule is linked to a network of hydrogen bonds involving the non-coordinated carboxylate oxygen of Asp167 and a conserved glutamine residue, Gln146. The MnSOD dimer is notable for the way in which the two active sites are interconnected and a "bridge" comprising His171 of one monomer and Glu170 of the other offers a route for inter-site communication. Comparison of E. coli MnSOD and FeSOD (a) reveals some differences in the dimer interface, (b) yields no obvious explanation for their metal specificities, and (c) provides a structural basis for differences in DNA binding, where for MnSOD the groove formed by dimerization is complementary in charge and surface contour to B-DNA.  相似文献   

11.
The filamentous cyanobacterium Anabaena PCC 7120 (now renamed Nostoc PCC 7120) possesses two genes for superoxide dismutase (SOD). One is an iron-containing (FeSOD) whereas the other is a manganese-containing superoxide dismutase (MnSOD). Localization experiments and analysis of the sequence showed that the FeSOD is cytosolic, whereas the MnSOD is a membrane-bound homodimeric protein containing one transmembrane helix, a spacer region, and a soluble catalytic domain. It is localized in both cytoplasmic and thylakoid membranes at the same extent with the catalytic domains positioned either in the periplasm or the thylakoid lumen. A phylogenetic analysis revealed that generally the highly homologous MnSODs of filamentous cyanobacteria are unique in being membrane-bound. Two recombinant variants of Anabaena MnSOD lacking either the hydrophobic region (MnSOD(Delta 28)) or the hydrophobic and the linker region (MnSOD(Delta 60)) are shown to exhibit the characteristic manganese peak at 480 nm, an almost 100% occupancy of manganese per subunit, a specific activity using the ferricytochrome assay of (660 +/- 90) unit mg-1 protein and a dissociation constant for the inhibitor azide of (0.84 +/- 0.05) mm. Using stopped-flow spectroscopy it is shown that the decay of superoxide in the presence of various (MnSOD(Delta 28)) or (MnSOD(Delta 60)) concentrations is first-order in enzyme concentration allowing the calculation of catalytic rate constants which increase with decreasing pH: 8 x 10(6) m-1 s-1 (pH 10) and 6 x 10(7) m-1 s-1 (pH 7). The physiological relevance of these findings is discussed with respect to the bioenergetic peculiarities of cyanobacteria.  相似文献   

12.
The genome of Escherichia coli codes for two superoxide dismutases that may contain either iron (FeSOD) or manganese (MnSOD) at the active site. The crystal structures of MnSODs from two bacterial sources (but not E. coli) have been completed, and structural comparisons with the crystal structure of the FeSOD from either E. coli or Pseudomonas ovalis have been made. Despite the low degree (less than 50%) of sequence homology between the E. coli enzymes, the two proteins are suggested to be structurally homologous. Nonetheless, these enzymes exhibit absolute metal cofactor specificity in conferring enzymatic activity to the inactive apoenzyme. This observation is surprising considering the identity of the active site ligands and the similarities in their geometry and surrounding environment. Using analytical ultracentrifugation, we have determined that the solution properties of these two proteins are different. Thus dialysis of FeSOD but not of MnSOD against phosphate buffer in the presence or absence of EDTA caused dissociation of the homodimer. This dissociation appeared to be related to the loss of iron from native FeSOD. Thus, apoFeSOD but not apoMnSOD existed predominantly as a monomer at protein concentrations below 150 micrograms/mL. ApoMnSOD showed no evidence for dissociation under these conditions. Fluorescence data suggest that the tryptophan environments for the two enzymes are also different. The results of these physical measurements lead us to propose that subtle differences, perhaps at the subunit contact faces, exist in the structures of these crystallographically similar proteins.  相似文献   

13.
Superoxide dismutases are enzymes that defend against oxidative stress through decomposition of superoxide radical. Escherichia coli contains two highly homologous superoxide dismutases, one containing manganese (MnSOD) and the other iron (FeSOD). Although E. coli Mn and FeSOD catalyze the dismutation of superoxide with comparable rate constants, it is not known if they are physiologically equivalent in their protection of cellular targets from oxyradical damage. To address this issue, isogenic strains of E. coli containing either Mn or FeSOD encoded on a plasmid and under the control of tac promoter were constructed. SOD specific activity in the Mn and FeSOD strains could be controlled by the concentration of isopropyl beta-thiogalactoside in the medium. The tolerance of these strains to oxidative stress was compared at equal Mn and FeSOD specific activities. Our results indicate that E. coli Mn and FeSOD are not functionally equivalent. The MnSOD is more effective than FeSOD in preventing damage to DNA, while the FeSOD appears to be more effective in protecting a cytoplasmic superoxide-sensitive enzyme. These data are the first demonstration that Mn and FeSOD are adapted to different antioxidant roles in E. coli.  相似文献   

14.
Evolutionary relationships among marine species assigned to the genera Alteromonas, Oceanospirillum, Pseudomonas, and Alcaligenes were determined by an immunological study of their Fe-containing superoxide dismutases (FeSOD) and glutamine synthetases (GS), two enzymes with differentially conserved amino acid sequences which are useful for determining intermediate and distant relationships, respectively. Five reference antisera were prepared against the FeSODs from Alteromonas macleodii, A. haloplanktis, Oceanospirillum commune, Pseudomonas stanieri, and Deleya pacifica. For GS, a previously prepared antiserum to the enzyme from Escherichia coli was employed. Amino acid sequence similarities for both enzymes were determined by the quantitative microcomplement fixation technique and the Ouchterlony double diffusion procedure. Six evolutionary groups were detected by FeSOD sequence similarities: three subgroups within the genus Alteromonas, the genera Oceanospirillum and Pseudomonas, and a new genus, Deleya (to accommodate marine Alcaligenes). Only four groupings were delineated by the GS data: the latter three genera and one group composed of all the species of Alteromonas. Evidence that all of these subgroups are derived from the evolutionary lineage defined by the purple sulfur photosynthetic bacteria is presented.Abbreviations Alt Alteromonas - anti-Amac, anti-Ahal, anti-Ocom, anti-Psta, anti-Dpac antisera to the Fe-containing superoxide dismutases from Alteromonas macleodii 107, Alteromonas haloplanktis 121, Oceanospirillum commune 8, Pseudomonas stanieri 146, Deleya pacifica 62 - FeSOD Fe-containing superoxide dismutase - G+C guanine plus cytosine - GS glutamine synthetase - ImD immunological distance - MnSOD Mn-containing superoxide dismutase - Oce Oceanospirillum - Pse Pseudomonas - Rm relative mobility - rRNA ribosomal RNA - SOD superoxide dismutase Dedicated to the memory of Professor Roger Y. Stanier  相似文献   

15.
The iron-containing superoxide dismutase (FeSOD) from the thermophilic cyanobacterium Thermosynechococcus elongatus has been isolated. The protein crystallizes readily and we have determined the structure to 1.6 A resolution. This is the first structural characterization of an FeSOD isolated from a cyanobacterium and one of the highest resolution FeSOD structures determined to date. The activity of the T. elongatus FeSOD has been measured both at 25 degrees C and 50 degrees C and it has been spectroscopically characterized. The T. elongatus FeSOD EPR spectra at pH 5.1, 7.5 and 10.0 are similar. This indicates that no change in the geometry of the Fe(III) site occurs over a wide range of pH. This is in contrast to the other FeSODs described in the literature.  相似文献   

16.
Mutagenesis studies on conserved histidine residues identified as possible metal binding ligands in clavaminic acid synthase isozyme 2 were consistent with His-145 and His-280 acting as iron ligands, in support of crystallographic and previous mutagenesis studies. Mutagenesis of the four cysteines and a glutamine residue, conserved in both clavaminic acid synthase isozymes 1 and 2, demonstrated that none of these residues is essential for activity.  相似文献   

17.
Cadmium is a highly toxic metal whose presence in the environment represents a challenge for all forms of life. To improve our knowledge on cadmium toxicity, we have explored Salmonella Typhimurium responses to this metal. We have found that cadmium induces the concomitant expression of the cation efflux pump ZntA and of the high affinity zinc import system ZnuABC. This observation suggests that cadmium accumulation within the cell induces a condition of apparent zinc starvation, possibly due to the ability of this metal to compete with zinc for the metal binding site of proteins. This hypothesis is supported by the finding that strains lacking ZntA or ZnuABC are hyper-susceptible to cadmium and that the cadmium-induced growth defect of a znuABC mutant strain is largely relieved by zinc supplementation. A similar growth defect was observed for a mutant with impaired ability to acquire iron, whereas cadmium does not affect growth of a strain defective in manganese import. Cadmium also influences the expression and activity of the two cytoplasmic superoxide dismutases FeSOD and MnSOD, which are required to control cadmium-mediate oxidative stress. Exposure to cadmium causes a reduction of FeSOD activity in Salmonella wild type and the complete abrogation of its expression in the strain defective in iron import. In contrast, although MnSOD intracellular levels increase in response to cadmium, we observed discrepancies between protein levels and enzymatic activity which are suggestive of incorporation of non-catalytic metals in the active site or to cadmium-mediated inhibition of manganese import. Our results indicate that cadmium interferes with the ability of cells to manage transition metals and highlight the close interconnections between the homeostatic mechanisms regulating the intracellular levels of different metals.  相似文献   

18.
[NiFe] hydrogenases contain a highly conserved histidine residue close to the [NiFe] active site which is altered by a glutamine residue in the H(2)-sensing [NiFe] hydrogenases. In this study, we exchanged the respective glutamine residue of the H(2) sensor (RH) of Ralstonia eutropha, Q67 of the RH large subunit HoxC, by histidine, asparagine and glutamate. The replacement by histidine and asparagine resulted in slightly unstable RH proteins which were hardly affected in their regulatory and enzymatic properties. The exchange to glutamate led to a completely unstable RH protein. The purified wild-type RH and the mutant protein with the Gln/His exchange were analysed by continuous-wave and pulsed electron paramagnetic resonance (EPR) techniques. We observed a coupling of a nitrogen nucleus with the [NiFe] active site for the mutant protein which was absent in the spectrum of the wild-type RH. A combination of theoretical calculations with the experimental data provided an explanation for the observed coupling. It is shown that the coupling is due to the formation of a weak hydrogen bond between the protonated N(epsilon) nucleus of the histidine with the sulfur of a conserved cysteine residue which coordinates the metal atoms of the [NiFe] active site as a bridging ligand. The effect of this hydrogen bond on the local structure of the [NiFe] active site is discussed.  相似文献   

19.
Superoxide dismutase (SOD) is considered to be the first line of defense against oxygen toxicity. It exists as a family of three metalloproteins with copper,zinc (Cu,ZnSOD), manganese (MnSOD), and iron (FeSOD) forms. In this work, we have targeted Escherichia coli FeSOD to the mitochondrial intermembrane space (IMS) of yeast cells deficient in mitochondrial MnSOD. Our results show that FeSOD in the IMS increases the growth rate of the cells growing in minimal medium in air but does not protect the MnSOD-deficient yeast cells when exposed to induced oxidative stress. Cloned FeSOD must be targeted to the mitochondrial matrix to protect the cells from both physiological and induced oxidative stress. This confirms that the superoxide radical is mainly generated on the matrix side of the inner mitochondrial membrane of yeast cells, without excluding its potential appearance in the mitochondrial IMS where its elimination by SOD is beneficial to the cells.  相似文献   

20.
The effects of metal salts, chelating agents, and paraquat on the superoxide dismutases (SODs) of Escherichia coli B were explored. Mn(II) increased manganese-containing SOD (MnSOD), whereas Fe(II) increased iron-containing SOD (FeSOD). Chelating agents induced MnSOD but decreased FeSOD and markedly increased the degree of induction seen with Mn(II). Paraquat also exerted a synergistic effect with Mn(II). High levels of MnSOD were achieved in the combined presence of Mn(II), chelating agent, and paraquat. All of these effects were dependent on the presence of oxygen. MnSOD, not ordinarily present in anaerobically grown E. coli cells, was present when the cells were grown anaerobically in the presence of chelating agents. These results are accommodated by a scheme which incorporates autogenous repression by the apoSODs and competition between Fe(II) and Mn(II) for the metal-binding sites of the apoSODs. It is further supposed that oxygenation and intracellular O2- production favor MnSOD production because O2- oxidizes Mn(II) to Mn(III), which competes favorably with Fe(II) for the apoSODs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号