首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of the study was to determine the effect of chronic vasospasm after SAH on angiogenesis and the effect of endothelin-1, the main causative factor in vasospasm, on this process. Male Wistar rats, 220-250 g, were examined. Seven days after cannulation of the cisterna magna (CM), a 100 microl dose of non-heparinized blood was administered to induce SAH. Sham SAH (aSAH) was induced by intracisternal injection of 100 microl of artificial cerebrospinal fluid. Endothelin receptor antagonist BQ-123 in a dose of 40 nmol in 50 microl of cerebrospinal fluid was given three times: 20 min. before SAH and aSAH, 60 min and 24 hours after SAH and aSAH. The same pattern of BQ-123 administration was used in the nonSAH group. The brains were removed 48 hours later for histological evaluation. Vascular surface density was measured in cerebral hemisphere sections (at the level of the dorsal part of the hippocampus) and brain stem sections (1/2 of the pons). An increase in angiogenesis was observed after SAH, compared to control values. The administration of BQ-123, a specific endothelin receptor blocker inhibits angiogenesis in cerebral hemispheres after SAH.  相似文献   

2.
Vasospasm after subarachnoid hemorrhage (SAH) is associated with lipid peroxidation. However, lipid peroxides increase in a delayed fashion after SAH and may be a byproduct of but not a cause of vasospasm. This study correlated vasospasm with hydroxyl free radical and lipid peroxide levels. 24 dogs had baseline cerebral angiography and induction of SAH by 2 injections of blood into the cisterna magna at baseline and 2 days later. Angiography was repeated 4, 7, 10, 14 or 21 days after the first injection (n = 4 per group) and a microdialysis catheter was inserted into the premedullary cistern. Control dogs (n = 4) underwent angiography and microdialysis but not SAH. Salicylic acid, 100 mg/kg, was administered intravenously, and microdialysis fluid was collected and analyzed by high pressure liquid chromatography for 2,3- and 2,5-dihydroxybenzoic acids (DHBA). Malondialdehyde was measured in subarachnoid clot removed from the prepontine cistern and in the basilar artery itself at the time of euthanasia. Significant vasospasm developed 4 to 14 days after SAH. Malondialdehyde levels were significantly elevated in the basilar artery and subarachnoid clot 4 days after SAH (p < 0.0001, ANOVA) but not at other times. 2,5-DHBA levels were significantly greater than control at 4 to 14 days and they peaked at 4 days (p < 0.05, ANOVA). 2,3-DHBA was significantly increased at 4 days after SAH (p < 0.05, ANOVA). There were significant correlations between basilar artery malondialdehyde levels and vasospasm and cerebrospinal fluid 2,5-DHBA levels and vasospasm. These results suggest the presence of hydroxyl free radical after SAH and demonstrate a correlation between such production, as measured by trapping with salicylate, and the early phase of vasospasm. The correlation with vasospasm implicates free radicals and lipid peroxidation in this phase of vasospasm.  相似文献   

3.
To examine the possible involvement of lipoxygenase products from arachidonic acid in the pathogenesis of delayed vasospasm after subarachnoid hemorrhage (SAH), we measured the contents of hydroxyeicosatetraenoic acids (HETEs) in the subarachnoid clot, the cerebrospinal fluid, and the basilar artery, using the canine "two-hemorrhage" model. Lipoxygenase activity in the subarachnoid clot and the basilar artery was measured, ex vivo, using samples obtained 7 days after SAH. For a quantitative analysis of HETEs, each sample was homogenized with either ice-cold saline or methanol. The lipid extract was then submitted to reverse-phase HPLC. The identity of each HETE was further confirmed using straight-phase HPLC and gas chromatography-mass spectrometry. When the basilar artery was homogenized with ice-cold saline, a significant increase in the 5-HETE content was observed on SAH day 8. However, when the artery was homogenized with methanol, HETEs were not detected. In the case of incubation in the presence of arachidonic acid and calcium ionophore A23187, the 5-lipoxygenase activity was remarkably increased in the basilar artery exposed to SAH, compared to that of normal dogs. The subarachnoid clot contained a significant amount of 12-HETE (average 1.8 nmol/g wet weight) from day 2 to day 8. The administration of 1,2-bis(nicotinamido)propane significantly ameliorated vasospasm in the two-hemorrhage model, simultaneously inhibiting the 5-lipoxygenase activity of the basilar artery. Our observations show that the activities of 12- and 5-lipoxygenases are significantly increased after SAH in the subarachnoid clot and the basilar artery, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Objective: To characterize and establish a reproducible model that demonstrates delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) in rats, in order to identify the initiating events, pathophysiological changes and potential targets for treatment.Methods: Twenty-eight male Sprague-Dawley rats (250 - 300 g) were arbitrarily assigned to one of two groups - SAH or saline control. Rat subarachnoid hemorrhage in the SAH group (n=15) was induced by double injection of autologous blood, 48 hr apart, into the cisterna magna. Similarly, normal saline (n=13) was injected into the cisterna magna of the saline control group. Rats were sacrificed on day five after the second blood injection and the brains were preserved for histological analysis. The degree of vasospasm was measured using sections of the basilar artery, by measuring the internal luminal cross sectional area using NIH Image-J software. The significance was tested using Tukey/Kramer''s statistical analysis.Results: After analysis of histological sections, basilar artery luminal cross sectional area were smaller in the SAH than in the saline group, consistent with cerebral vasospasm in the former group. In the SAH group, basilar artery internal area (.056 μm ± 3) were significantly smaller from vasospasm five days after the second blood injection (seven days after the initial blood injection), compared to the saline control group with internal area (.069 ± 3; p=0.004). There were no mortalities from cerebral vasospasm.Conclusion: The rat double SAH model induces a mild, survivable, basilar artery vasospasm that can be used to study the pathophysiological mechanisms of cerebral vasospasm in a small animal model. A low and acceptable mortality rate is a significant criterion to be satisfied for an ideal SAH animal model so that the mechanisms of vasospasm can be elucidated 7, 8. Further modifications of the model can be made to adjust for increased severity of vasospasm and neurological exams.  相似文献   

5.
《Cytokine》2011,53(3):245-251
Inflammatory responses have been implicated in the elaboration of several forms of central nervous system injury, including cerebral vasospasm after subarachnoid hemorrhage (SAH). A critical event participating in such responses is the recruitment of circulating leukocytes into the inflammatory site. CD34 is a key adhesion molecule responsible for recruitment of monocytes/macrophages and the attachment of leukocytes to endothelial cells. However, it has not been investigated whether, and to what degree, CD34 is induced by SAH and also the role of CD34 in the pathogenesis of cerebral vasospasm following SAH remains unknown. Experiment 1 aimed to investigate the timecourse of the CD34 expression in the basilar artery after SAH. In experiment 2, we chose the maximum time point of vasospasm (day 3) and assessed the effect of monoclonal antibody against CD34 on regulation of cerebral vasospasm. As a result, the elevated expression of CD34 was detected in the basilar artery after SAH and peaked on day 3. After intracisternal administration of CD34 monoclonal antibody, the vasospasm was markedly attenuated after blood injection on day 3. Our results suggest that CD34 is increasingly expressed in a parallel time course to the development of cerebral vasospasm in a rat experimental model of SAH and administration of the specific CD34 antibody could prevent or reduce cerebral vasospasm caused by SAH.  相似文献   

6.
7.
Though cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) has been recognized for over half a century, it remains a major complication in patients with SAH. Clinical studies have shown that elevated levels of endothelin-1 (ET-1) are present in the cerebrospinal fluid of patients with SAH, suggesting that ET-1-mediated vasoconstriction contributes to vascular constriction after SAH. Administration of estrogen promotes vasodilation in humans and in experimental animals, in part by decreasing the production of ET-1. This study evaluated the influence of 17beta-estradiol (E2) on the production of ET-1 and cerebrovasospasm in an experimental SAH 2-hemorrhage model in rat. A 30-mm Silastic tube filled with E2 in corn oil (0.3 mg/ml) was subcutaneously implanted in male rats just before SAH induction. The degree of vasospasm was determined by averaging the cross-sectional areas of basilar artery 7 days after first SAH. Plasma samples collected before death were assayed for ET-1. The protective effect of E2 in attenuating vasospasm achieved statistical significance when compared with the SAH only or SAH plus vehicle groups (P < 0.01). Concentrations of ET-1 were higher in the SAH only and SAH plus vehicle groups than in controls (P < 0.001). Serum levels of ET-1 in the SAH plus E2 and E2 only groups were significantly lower than those in the SAH only and SAH plus vehicle groups (P < 0.001). There was no significant difference between ET-1 levels in the healthy control and SAH plus E2 groups. A significant correlation was found between the cross-sectional areas of basilar artery and ET-1 levels (P < 0.001). The beneficial effect of E2 in attenuating SAH-induced vasospasm may be due in part to decreasing ET-1 production after SAH. The role of E2 in the treatment of cerebral vasospasm after SAH is promising and is worthy of further investigation.  相似文献   

8.
There is increasing evidence that the conversion of big endothelin-1 (big ET-1) to endothelin-1 (ET-1) is specifically inhibited by the metalloproteinase inhibitor phosphoramidon. We investigated the effect of phosphoramidon on delayed cerebral vasospasm from subarachnoid hemorrhage (SAH) using a two-hemorrhage canine model. The magnitude of the vasospasm and the drug effect were determined angiographically. On SAH Day 7, diameter of the basilar artery decreased to about 55% of the control value obtained before SAH (on Day 0). Immunoreactive ET (IR-ET) in the cerebrospinal fluid (CSF) significantly increased after SAH (on Day 7). The intracisternal pretreatment of phosphoramidon potently suppressed the decrease in diameter of the basilar artery after SAH, i.e., observed decrease was only about 20%, compared with the value before SAH. In the phosphoramidon group, IR-ET in CSF markedly increased (on SAH Day 2), but the increased levels of IR-ET significantly declined on SAH Day 7. These results clearly indicate that phosphoramidon effectively prevents delayed cerebral vasospasm. Whether the prevention is due to the inhibition of conversion of big ET-1 to ET-1 is now under study.  相似文献   

9.
大鼠脑血管痉挛时NO和ET—1变化及尼莫地平的影响   总被引:1,自引:0,他引:1  
目的探讨蛛网膜下腔出血(SAH)后脑血管痉挛(CVS)时脑组织一氧化氮(NO)和内皮素-1(ET-1)含量变化及尼莫地平(ND)对其影响。方法将135只Wistar大鼠随机均分为SAH组、ND处理组和假手术组,观察手术前后基底动脉管径,及24h内局部脑血流量(rCBF)、脑组织NO和ET-1含量动态改变,并行海马病理检查。结果SAH后rCBF明显而持续降低,基底动脉管径显著缩小;海马CAl区锥体细胞严重受损;脑组织NO和ET-1含量均在SAH后1~24h显著增加(P<0.05~0.01)。ND处理后使上述异常变化均减轻。结论SAH后脑组织NO、ET-1增多可能参与了CVS所致脑损害过程,ND通过减轻CVS和拮抗脑组织NO及ET-1的病理性改变而发挥脑保护作用。  相似文献   

10.
Delayed cerebral vasospasm after subarachnoid hemorrhage (SAH) may be due, in part, to altered regulation of arterial smooth muscle contraction. Contraction of cerebral arteries to serotonin is augmented after experimental SAH. We hypothesized that activation of Rho-associated kinase (Rho kinase) contributes to augmented contraction of cerebral arteries to serotonin after SAH. Autologous arterial blood (SAH) or artificial cerebrospinal fluid (control) was injected into the cisterna magna of anesthetized rabbits. At 2 days after injection, the basilar artery was excised and isometric contraction of arterial rings was recorded. Maximum contraction of the basilar artery to serotonin was augmented about fourfold in SAH compared with control rabbits (P < 0.01). Contraction to histamine was similar in the two groups. Fasudil hydrochloride (3 mumol/l), an inhibitor of Rho kinase, markedly attenuated serotonin-induced contraction. Fasudil had little effect on contractions induced by histamine or phorbol 12,13-dibutyrate. In addition, phosphorylation of myosin phosphatase, a major target of Rho kinase in regulation of smooth muscle contraction, in the basilar artery was examined by Western blotting. In basilar arteries of SAH, but not control, rabbits, serotonin increased phosphorylation of myosin phosphatase about twofold at Thr(853) of the myosin-targeting subunit. These results suggest that enhanced activation of Rho kinase contributes to augmented contraction of the basilar artery to serotonin after SAH.  相似文献   

11.
This study aimed to investigate the expression of the Nemo-like kinase (NLK) in the brain after experimental subarachnoid hemorrhage (SAH) in rats. A total of 90 rats were randomly divided into six groups: control group, day 1, day 3, day 5, day 7, and day 14. Day 1, day 3, day 5, day 7, and day 14 groups were all SAH groups in which the rats were killed on days 1, 3, 5, 7, and 14, respectively. In SAH groups, autologous arterial blood was injected into cisterna magna once on day 0. Cross-sectional area of basilar artery was measured by H&E staining. Immunostaining and immunoblotting experiments were performed to detect the expression of NLK protein. Real-time polymerase chain reaction was used to analyze the presence and quantity of NLK mRNA. The level of oxidative stress in the artery was also measured. The basilar arteries exhibited vasospasm after SAH and became the most severe on day 3. The expressions of NLK protein and mRNA were decreased remarkably in SAH groups compared with the control group. The down-regulated expression of NLK was detected after SAH and the low ebb was on day 3, which was oppositely the peak time of oxidative stress. The expression of NLK was present mainly in the neurons in the brain and smooth muscle cells in the basilar artery. NLK is decreasingly expressed in an opposite time-course to the development of cerebral vasospasm (CVS) and SAH-induced brain injury in this rat experimental model of SAH and these findings might have important implications during the administration of specific NLK agonist to prevent or reduce CVS or neuronal apoptosis caused by SAH.  相似文献   

12.
实验性兔蛛网膜下腔出血后,基底动脉壁丙二醛(MDA)含量及超氧化物峻化酶(SOD)、过氧化氢酶(CAT)活性发生改变,基底动脉出现痉挛,应用SOD后上述变化减轻。离体采用生物检定法发现,基底动脉受自由基损伤后,去甲肾上腺素(NE)诱导的血管收缩效应增强,而ACh诱导的血管舒张效应减弱。用SOD防止了ACh诱导的血管舒张效应的减弱。结果表明,氧自由基参与了脑血管痉挛的发生,而脑血管受自由基损伤后,其内皮舒张因子释放减少是脑血管痉挛发病的重要因素。  相似文献   

13.
Endothelin-1, a potent vasoconstrictive peptide, has been implicated in the pathogenesis of cerebral vasospasm following subarachnoid hemorrhage (SAH). The goal of this study was to evaluate the effect of continuous intravenous infusion of a highly selective endothelin-converting enzyme-1 inhibitor, CGS 35066, on the prevention and reversal of cerebral vasospasm following SAH. New Zealand white rabbits were subjected to SAH by injecting autologous arterial blood into the cisterna magna. Infusion of CGS 35066 at dosages of 1, 3, or 10 mg/kg/ day was initiated either 1 hr and 24 hrs later in the prevention and reversal protocols, respectively. Animals were sacrificed by perfusion-fixation 48 hrs after SAH induction. The cross-sectional areas of basilar arteries were measured using computer-assisted videomicroscopy. Ultrastructural changes in basilar arteries were determined using electron microscopy. CGS 35066 significantly prevented and reversed the arterial narrowing after SAH in all three groups. The mean cross-sectional areas of arteries from animals in both the prevention and reversal protocol groups that received 10 mg/kg/day of CGS 35066 did not differ significantly from those of the healthy controls. Histological studies of the basilar artery in the 10 mg/kg/day treatment group did not show pathomorphological changes, such as corrugation of the endothelium seen at 2 days after SAH induction or vacuole formation in the endothelial cells noted in the vehicle-treated SAH group. These findings suggest that CGS 35066 is a promising therapeutic agent for the prevention and reversal of cerebral vasospasm after SAH. It also prevents the pathological changes in vascular walls due to SAH.  相似文献   

14.
The chronic stage of vasospasm occurring several days after subarachnoid hemorrhage (SAH) is characterized by the development of histopathologic changes in cerebral arteries causing cerebral ischemia. Numerous experimental data indicate the involvement of immune mechanisms in the angiopathy caused by SAH. Endogenous opioids play also an important role in the ischemic lesions of the brain. Corticotropin releasing hormone (CRH) induces the release of beta-endorphin (beta-END) from hypothalamic neurons and also from mononuclear white blood cells. The function of CRH and beta-END in vasospasm following SAH and the interrelationship between neuroendocrine and immune changes requires further elucidation. In the present study we investigated the influence of CRH injected into cerebral cisterna magna (CM) of rats on beta-END-like level in cerebrospinal fluid (CSF) in acute and chronic phase of cerebral vasospasm following artificial SAH. Acutely CRH induced a significant rise of beta-END-like in CSF both in SAH and sham SAH rats. However, in rats subjected to SAH, a single injection of CRH caused a prolonged rise of 5-END in CSF, which was also seen 2 days after SAH, during the chronic phase of vasospasm. The obtained results indicate that CRH increases neuroendocrine changes induced by SAH, probably by an activation of immune cells involved in the patomechanism of chronic vasospasm.  相似文献   

15.
A substantial number of rat models have been used to research subarachnoid hemorrhage-induced cerebral vasospasm; however, controversy exists regarding which method of selection is appropriate for this species. This study was designed to provide extensive information about the three most popular subarachnoid hemorrhage rat models: the endovascular puncture model, the single-hemorrhage model, and the double-hemorrhage model. In this study, the basilar artery and posterior communicating artery were chosen for histopathological examination and morphometric analysis. Both the endovascular puncture model and single-hemorrhage model developed significant degrees of vasospasm, which were less severe when compared with the double-hemorrhage model. The endovascular puncture model and double-hemorrhage model both developed more vasospasms in the posterior communicating artery than in the basilar artery. The endovascular puncture model has a markedly high mortality rate and high variability in bleeding volume. Overall, the present study showed that the double-hemorrhage model in rats is a more suitable tool with which to investigate mechanism and therapeutic approaches because it accurately correlates with the time courses for vasospasm in humans.  相似文献   

16.
A matricellular protein tenascin-C (TNC) has been suggested to play a role in the pathogenesis of cerebral vasospasm after subarachnoid hemorrhage (SAH), but the direct evidence remains lacking. In this study, we examined effects of TNC knockout (TNKO) on cerebral vasospasm after experimental SAH in mice. C57BL/6 wild-type (WT) or TNKO mice were subjected to SAH by endovascular puncture. Ten WT and ten TNKO mice were randomized to WT sham (n = 4), TNKO sham (n = 4), WT SAH (n = 6), and TNKO SAH (n = 6) groups. In addition to neurobehavioral impairments and severity of SAH, cerebral vasospasm was assessed by morphometric measurements of the left internal carotid artery (ICA). Infiltration of inflammatory cells in the subarachnoid periarterial space was also assessed, and expressions of TNC and mitogen-activated protein kinases (MAPKs) in the ICA were immunohistochemically evaluated at 24 h post-surgery. TNC was induced in the smooth muscle cell layers and the adventitia in the spastic ICAs as well as the periarterial inflammatory cells in WT SAH mice. Compared with WT SAH mice, TNKO SAH mice showed better neurological scores and less severe cerebral vasospasm, as well as fewer inflammatory cell infiltration in the periarterial space. Post-SAH activation of MAPKs in the smooth muscle cell layers of the ICAs was also prevented in TNKO SAH mice. The findings in the present study suggest that TNC causes the development of cerebral vasospasm via pro-inflammatory effects and activation of MAPKs.  相似文献   

17.
It is suggested that endothelin-1 (ET-1), a potent vasoconstrictor peptide, is involved in the pathogenesis of cerebral vasospasm following subarachnoid hemorrhage (SAH). We examined the effects of intracisternal administration of big ET-1 on the cerebral arteries in the absence or presence of pretreatment with phosphoramidon, an inhibitor of ET converting enzyme, in anesthetized dogs. After intracisternal administration of big ET-1 (10 micrograms/dog), the caliber of the basilar artery on the angiogram was decreased to about 59% of the control. This was accompanied by a marked increase in immunoreactive ET in the cerebrospinal fluid. Systemic arterial pressure was markedly elevated following big ET-1 injection. All changes induced by big ET-1 were effectively prevented with phosphoramidon. These data suggest that intracisternally administered big ET-1 is converted to ET-1 and that the generated ET-1 produces cerebral vasospasm and hypertension. A phosphoramidon-sensitive metalloproteinase appears to contribute to this conversion.  相似文献   

18.
Role of MAPK in chronic cerebral vasospasm   总被引:7,自引:0,他引:7  
Aoki K  Zubkov AY  Tibbs RE  Zhang JH 《Life sciences》2002,70(16):1901-1908
This study was undertaken to investigate the role of p44/42 MAPK in a dog double hemorrhage model of subarachnoid hemorrhage (SAH), and whether MEK inhibitors can alter the degree of SAH-induced vasoconstriction. The diameter of the basilar artery, which was compared with day 0 angiogram, decreased gradually in a time-dependent manner from day 3 (80%), day 5 (68%) through day 7 (53.5%). The level of MAPK (p44/42) immunoprecipitation peaked on day 3 and remained enhanced through day 7 (P < 0.05). MEK inhibitor PD98059 significantly reduced p44/42 MAPK immunoprecipitation and significantly reversed vasospasm and increased residual diameter to 79.0% on day 7. These results demonstrated that p44/42 MAPK kinase is involved in the pathogenesis of cerebral vasospasm. The MEK inhibitor PD98059 might be useful in the treatment of vasospasm.  相似文献   

19.
Because it has been argued that active myogenic tone prolongs cerebral vasospasm for >2 wk after subarachnoid hemorrhage (SAH), we attempted to identify the mechanism that plays the main role in sustaining the prolonged cerebral vasospasm. We especially focused on the roles of biomechanical and phenotypic changes in the cerebral arteries in the mechanisms of prolonged vasospasm after SAH. We used the basilar arteries from a "two-hemorrhage" canine model to make serial measurements of maximal contraction capacity and arterial stiffness (papaverine-insensitive tone) until day 28. We also examined hematoxylin-eosin-stained vasospastic canine basilar arteries for histological changes and immunohistochemically examined them for expression of myosin heavy chain isoforms (SMemb, SM1, and SM2), which are markers of smooth muscle phenotypic changes. Changes in collagen concentration in canine basilar arteries were also measured. Angiographic cerebral vasospasm persisted until day 14 and then gradually diminished; artery diameter returned to the control diameters on day 28. Maximal contraction capacity decreased until day 21 and showed some recovery by day 28. Arterial stiffness, on the other hand, progressed until day 28. Histological examination revealed medial thickening and increased connective tissue until day 21 and a return to control findings by day 28. The increased connective tissue was not accompanied by changes in collagen concentration, suggesting a role of some other protein in the increase in connective tissue. Immunohistochemical studies with anti-SMemb, anti-SM1, and anti-SM2 antibodies showed enhanced expression of SMemb from day 7 to day 21 and disappearance of SM1 and SM2 on days 14 and 21. The changes in myosin heavy chain isoform expression returned to normal on day 28. The above results indicate that biomechanical and phenotypic changes may play a pivotal role in sustaining cerebral vasospasm for >2 wk after SAH, with minimal changes in active myogenic arterial tone.  相似文献   

20.

Objective

To investigate the changes in the currents of voltage-dependent calcium channels (VDCCs) in smooth muscle cells of basilar artery in a rabbit model of subarachnoid hemorrhage (SAH).

Methods

New Zealand white rabbits were randomly divided into five groups: sham (C), normal (N), 24 hours (S1), 48 hours (S2) and 72 hours (S3) after SAH. Non-heparinized autologous arterial blood (1ml/kg) was injected into the cisterna magna to create SAH after intravenous anesthesia, and 1 ml/kg of saline was injected into cisterna magna in the sham group. Rabbits in group N received no injections. Basilar artery in S1, S2, S3 group were isolated at 24, 48, 72 hours after SAH. Basilar artery in group C was isolated at 72 hours after physiological saline injection. Basilar artery smooth muscle cells were isolated for all groups. Whole-cell patch-clamp technique was utilized to record cell membrane capacitance and VDCCs currents. The VDCCs antagonist nifedipine was added to the bath solution to block the Ca++ channels currents.

Results

There were no significant differences in the number of cells isolated, the cell size and membrane capacitance among all the five groups. VDCC currents in the S1–S3 groups had higher amplitudes than those in control and sham groups. The significant change of current amplitude was observed at 72 hours after SAH, which was higher than those of 24 and 48 hours. The VDCCs were shown to expression in human artery smooth muscle cells.

Conclusions

The changes of activation characteristics and voltage-current relationship at 72 hours after SAH might be an important event which leads to a series of molecular events in the microenvironment of the basilar artery smooth muscle cells. This may be the key time point for potential therapeutic intervention against subarachnoid hemorrhage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号