首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the intracellular messengers of potassium in eliciting aldosterone secretion in calf adrenal glomerulosa cells since there were unresolved issues relating to the role of phosphoinositides, cAMP and protein kinases. We observed no evidence of hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) in 3H-inositol labeled alf adrenal cells or increase of cAMP in response to potassium. Addition of calcium channel blocker, nitrendipine after stimulating adrenal glomerulosa cells with potassium, markedly inhibited aldosterone secretion. A calmodulin inhibitor (W-7) produced greater reduction of aldosterone secretion than an inhibitor of protein kinase C (H-7). These results suggest that a rise in cytosolic free calcium concentration through voltage-dependent calcium channel and calmodulin are the critical determinants of aldosterone secretion stimulated by potassium.  相似文献   

2.
It has been shown that serine proteases are involved in aldosterone and 18-hydroxycorticosterone production by the rat adrenal zona glomerulosa in response to a variety of stimulants. From evidence presented for various tissues, including the rat adrenal cortex, the observation that adenylate cyclase can be activated by proteolytic enzymes and inhibited by protease inhibitors has led to the suggestion that serine proteases may also be involved in the hormonal stimulation of adenylate cyclase. In studies designed to test this hypothesis using protease inhibitors, only high concentrations (greater than 10(-4) M) of TAME (p-tosyl-L-arginine methyl ester) inhibited ACTH stimulated steroid and cAMP production in rat adrenal glomerulosa cells. TPCK (tosyl-L-phenylalanine chloromethylketone) and TLCK (tosyl-L-lysine chloromethylketone) were found to have a similar effect at very high concentrations (10(-2) M) but had no effect at the serine protease inhibitory concentration of 5 X 10(-6) M. Other protease inhibitors tested had no effect on ACTH-stimulated cAMP but the inhibitory effect of high concentrations of protease inhibitors on ACTH-stimulated adenylate cyclase was duplicated by the polyanion dextran sulphate. The results suggest that the inhibitors act through non-specific membrane effects and that proteases are not involved in the activation of zona glomerulosa adenylate cyclase by ACTH. In view of these findings it is concluded that a more rigorous approach should be applied to the use of protease inhibitors in whole cell systems, and that the concept of hormonal activation of adenylate cyclase via proteolytic events, which is based on studies with such inhibitors, should be reconsidered.  相似文献   

3.
The present study was designed to assess whether citrate stimulates aldosterone production by isolated bovine adrenal glomerulosa cells in vitro. When the cells were incubated with graded concentrations of citrate up to 4.0 mM, basal aldosterone production was significantly elevated, with a gradual reduction of extracellular ionized calcium concentration. Without citrate, however, adding increasing amounts of calcium chloride to a calcium-free medium did not reproduce the citrate's effect on basal aldosterone production. Genistein, an inhibitor of tyrosine kinases, inhibited the citrate (4 mM)-induced aldosterone production in a dose-dependent manner, with 89.8% of inhibition at a concentration of 10 microM. When the cells were exposed to citrate (4 mM) for 5, 10, and 30 min, tyrosine in Mr 105,000 endogenous protein was dominantly phosphorylated. This study demonstrates for the first time that citrate stimulates aldosterone production in bovine adrenal glomerulosa cells in vitro and also suggests a crucial involvement of protein tyrosine kinase in the steroidogenic action of citrate in the cells.  相似文献   

4.
These studies were undertaken to examine the role of angiotensin II (A-II) in the regulation of adrenal glomerulosa cell differentiation. We were interested particularly in the ability of A-II to support aldosterone production in fetal adrenal cells. Many in vitro studies on acute A-II stimulation of aldosterone synthesis in adrenocortical cells have been documented. However, it is the long-term modification of steroid-metabolizing enzyme expression that leads to the formation and release of specific adrenal steroids. Herein, we used primary cultures of fetal bovine adrenal (FBA) cells to examine the effects of A-II on aldosterone production and the expression of aldosterone synthase cytochrome P450 (P450c18). A-II treatment caused the primary cultures to maintain glomerulosa cell functions. Cells treated for 3 days with A-II increased aldosterone production by 10-fold. A-II stimulation of aldosterone production occurred rapidly (within 30 min) and in a dose-dependent manner. In addition, A-II enhanced the activity of P450c18, the enzyme responsible for conversion of corticosterone to aldosterone. A-II also suppressed ACTH-promoted cortisol production, while increasing ACTH-stimulated release of aldosterone. It appears that these effects of chronic treatment with A-II were mediated through an A-II type 1 (AT1) receptor since the AT1 receptor antagonist, Dup753, blocked aldosterone production and the increased P450c18 activity. Receptor binding studies suggest that FBA cells possess approx. 110,000 AT1 binding sites/cell with Kd = 1.8 × 10−9 M. Via AT1 receptors, A-II was able to stimulate both inositol phosphates and cAMP production. The stimulation of cAMP production, however, was much less than seen following ACTH treatment. These data give support to the hypothesis that A-II is involved in the differentiation of fetal adrenal cells into glomerulosa cells. This process appears to be mediated through regulation of steroid-metabolizing enzyme expression and the activation of steroid production.  相似文献   

5.
In vitro studies of aldosterone production have traditionally used freshly isolated adrenal glomerulosa tissue. In the present study we examined the effects of short-term culture of rat adrenal capsule on its secretory capacity by measuring both basal and stimulated aldosterone production. Capsules were maintained in culture for 24 h, and then responses to administered angiotensin II (1 X 10(-7) M), potassium (an increase of 2mM) and ACTH (1 X 10(-8) M) were determined during perifusion. Results were compared with responses by freshly isolated adrenal capsule. Although short-term culture reduced basal aldosterone production, responsiveness to administered stimuli was intact and often was greater than that observed with fresh capsular tissue. The results indicate that short-term culture of zona glomerulosa provides a suitable in vitro preparation for examining aldosterone secretory responsiveness to stimuli.  相似文献   

6.
The effect of the cholesterol synthesis inhibitor BM 15.766, 4-[2-[1-(4-chlorocinamyl)piperazin-4-yl]ethyl]-benzoic acid on the corticosteroid production was studied in order to reveal the importance of endogenous cholesterol synthesis in the function of zona glomerulosa and zona fasciculata cells of rats. Attempts were made to compensate the effect of BM 15.766 through the application of high-density lipoproteins (HDL). Electron microscopy was used to trace the binding and intracellular accumulation of colloidal gold-labelled HDL (HDL-Au, a cholesterol carrier), in the presence of the cholesterol biosynthesis inhibitor. The stimulation of both types of cells with ACTH was less effective in the presence of 2 x 10(-5) M BM 15.766. The inhibitory effect of BM 15.766 was most marked on the aldosterone production of the zona glomerulosa cells, and could not be reversed by addition of a small amount of HDL-Au. Corticosterone-aldosterone conversion was inhibited by 2 x 10(-5) M BM 15.766. ACTH-stimulated, short-term HDL uptake and internalization was not affected by the cholesterol synthesis inhibitor. The results suggest that certain metabolites of de novo cholesterol biosynthesis may participate in the control of aldosterone production.  相似文献   

7.
The renin-angiotensin-aldosterone system plays a pivotal role in the regulation of salt and water homeostasis. Here, we demonstrate the expression and functional role of cGMP-dependent protein kinases (PKGs) in rat adrenal cortex. Expression of PKG II is restricted to adrenal zona glomerulosa (ZG) cells, whereas PKG I is localized to the adrenal capsule and blood vessels. Activation of the aldosterone system by a low sodium diet up-regulated the expression of PKG II, however, it did not change PKG I expression in adrenal cortex. Both, activation of PKG II in isolated ZG cell and adenoviral gene transfer of wild type PKG II into ZG cells enhanced aldosterone production. In contrast, inhibition of PKG II as well as infection with a PKG II catalytically inactive mutant had an inhibitory effect on aldosterone production. Steroidogenic acute regulatory (StAR) protein that regulates the rate-limiting step in steroidogenesis is a new substrate for PKG II and can be phosphorylated by PKG II in vitro at serine 55/56 and serine 99. Stimulation of aldosterone production by PKG II in contrast to stimulation by PKA did not activate StAR gene expression in ZG cells. The results presented indicate that PKG II activity in ZG cells is important for maintaining basal aldosterone production.  相似文献   

8.
Sphingosine and other protein kinase C inhibitors were tested for their ability to inhibit aldosterone synthesis by bovine adrenal glomerulosa cells. Sphingosine inhibited angiotensin (AII)-stimulated aldosterone synthesis (IC50 of 5 microM). At doses that totally blocked steroidogenesis, sphingosine did not affect protein synthesis or [125I]AII binding to cells. Sphingosine also inhibited dibutyryl cyclic AMP (dbcAMP)-stimulated aldosterone synthesis. Sphingosine inhibited pregnenolone synthesis from cholesterol, but not the conversion of progesterone or 20 alpha-hydroxycholesterol to aldosterone. These results suggest that sphingosine inhibits steroidogenesis at a locus close to that where stimulation occurs by AII and dbcAMP. Other protein kinase C inhibitors were tested. Retinal, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), and staurosporine inhibited aldosterone synthesis stimulated by AII and dbcAMP. Retinal and H-7 also inhibited progesterone conversion to aldosterone, and retinal blocked [125I]AII binding. Staurosporine was more specific, inhibiting AII-stimulated aldosteronogenesis at concentrations which had little effect on conversion of progesterone to aldosterone. Because they inhibited dbcAMP stimulation, none of the inhibitors was sufficiently specific to use as a probe of the role of protein kinase C. The IC50 of sphingosine suggests that this or related products of lipid hydrolysis could act as endogenous regulators of adrenal cell function.  相似文献   

9.
The present study was conducted to determine whether protein kinase C was involved in angiotensin II-mediated release of 12-hydroxyeicosatetraenoic acid (12-HETE) from bovine adrenal glomerulosa cells. Activators of protein kinase C, 12-O-tetradecanoylphorbol 4-acetate (TPA) and 1-oleoyl-2-acetylglycerol (OAG), significantly increased release of 12-HETE. The effect of OAG was potentiated by BAYK8644, a stimulator of calcium entry. Sphingosine, H-7 and staurosporine, which inhibited the activity of protein kinase C in vitro, almost completely blocked 12-HETE release induced by TPA. These agents also significantly reduced angiotensin II-mediated 12-HETE release. When time course of the liberation of 12-HETE was measured, angiotensin II elicited sustained release of 12-HETE, which was inhibited by staurosporine. These results indicate that angiotensin II induces sustained release of 12-HETE, a feed forward regulator of aldosterone secretion, and that protein kinase C may be involved in this process.  相似文献   

10.
In this study we have investigated various components of the stimulus-secretion coupling process leading to aldosterone secretion from the calf adrenal glomerulosa cells as evoked by angiotensin II (AII) and potassium (K+). The roles of Ca2+, calmodulin and protein kinase C in the sustained phase rather than initiation of aldosterone secretion were of special interest. Our investigations revealed that the reduction of extracellular Ca2+ by EGTA or interruption of Ca2+ influx by nitrendipine at various time points after stimulation with either AII or K+ markedly compromised aldosterone secretion. Calmodulin inhibitors, calmidazolium and W-7 reduced aldosterone secretion profoundly. Agonists of protein kinase C, phorbol ester or diacylglycerol analogues failed to stimulate aldosterone secretion while the protein kinase C inhibitor, H-7, only partially inhibited aldosterone secretion at a concentration which completely inhibited protein kinase C activity. Calmodulin inhibitors produced significantly greater inhibition of aldosterone secretion than inhibitors of protein kinase C.  相似文献   

11.
Benzodiazepines affect steroidogenesis in at least four ways depending on concentration and adrenocortical cell type. Firstly, at micromolar concentrations, they inhibit steroidogenic enzymes. Competition for microsomal 17- and 21-hydroxylase activity explains the inhibition of ACTH-stimulated aldosterone and cortisol synthesis by diazepam and midazolam. At slightly higher concentrations, we have evidence that 11β-hydroxylase activity is also inhibited. Secondly, at sub-micromolar concentrations, calcium influx is inhibited. T-type and L-type calcium channels appear to be blocked, this impairs signal response coupling and, in particular, decreases angiotensin-and K+-stimulated aldosterone synthesis in zona glomerulosa cells. Thirdly, the mitochondrion of steroidogenic tissues is a sensitive site for the stimulatory effects of benzodiazepines. Aldosterone synthesis from added HDL-cholesterol by cultured bovine zona glomerulosa cells is stimulated by diazepam, RO5-4864 and PK11195. The fourth site of benzodiazepine's effect on steroidogenesis is particular to zona glomerulosa cells. In addition to cholesterol side chain cleavage, the final part of the aldosterone biosynthetic pathway, the conversion from deoxycorticosterone is controlled. Although high micromolar concentrations of diazepam appear to be inhibitory, lower nanomolar concentrations stimulate the synthesis of aldosterone from added deoxycorticosterone. In vivo, a fifth site of benzodiazepine activity may influence plasma steroid concentrations. Competition between steroids and benzodiazepines for hepatic clearance enzymes may affect half lives of both drugs and hormones.  相似文献   

12.
A prolonged infusion with ANF (20 micrograms/kg/h for 7 days) induced atrophy of zona glomerulosa cells and lowering of basal plasma concentration of aldosterone in rats whose hypothalamo-hypophyseal-adrenal axis and renin-angiotensin system had been interrupted by the simultaneous administration of dexamethasone/captopril and maintenance doses of ACTH/angiotensin II. Chronic ANF treatment also caused comparable reductions in the aldosterone response of zona glomerulosa cells to the acute stimulation with angiotensin II, potassium and ACTH. These data are interpreted to indicate that ANF exerts an inhibitory effect on the growth and secretory activity of rat zona glomerulosa, and that the mechanism underlying this action of ANF does not involve blockade of renin release or ACTH secretion.  相似文献   

13.
The physiologic regulation of aldosterone secretion is dependent on extracellular calcium and appears to be mediated by increases in cytosolic free calcium concentration in the zona glomerulosa cell. A specific role for voltage-dependent calcium channels was suggested by previous studies with the calcium channel antagonist verapamil. We therefore studied the [3H]nitrendipine calcium channel binding site in adrenal capsules. These studies revealed a single class of saturable, high affinity sites with KD = .26 +/- .04 nM and Bmax = 105 +/- 5.7 fmol/mg protein. Specific binding of [3H]nitrendipine was inhibited by calcium channel antagonists with potencies nitrendipine = nifedipine much greater than verapamil, while diltiazem had no inhibitory effect. In the rat, binding sites for [3H]nitrendipine were located in the adrenal capsule and medulla and were undetectable in the zona fasciculata. Physiologic studies with collagenase-dispersed adrenal glomerulosa cells demonstrated that nifedipine selectively inhibited angiotensin-II and potassium-stimulated steroidogenesis. These observations suggest both a pharmacologic and physiologic role for the nitrendipine binding site in aldosterone production.  相似文献   

14.
The relationship between aldosterone production and prostaglandin E2 synthesis was evaluated using the responses of isolated rat adrenal glomerulosa cells to angiotensin II, ACTH and potassium. Simultaneous PGE2 and aldosterone measurements were made during timed incubations with these stimuli, and in incubations with arachidonic acid, meclofenamate, indomethacin, and aminoglutethamide. PGE2 and aldosterone production were assessed by radioimmunoassay. We were not able to demonstrate stimulation of PGE2 by angiotensin II, ACTH, or potassium despite significant increments in aldosterone production with these stimuli. Arachidonic acid enhanced PGE2 synthesis, but had no effect on aldosterone release. Indomethacin and meclofenamate inhibited aldosterone secretion. Aminoglutethimide depressed aldosterone production, but had little effect on PGE2 levels in the media.These studies demonstrate that dienoic prostaglandins play no direct role in aldosterone production stimulated by angiotensin II, ACTH, or potassium in rat adrenal glomerulosa cells. Since inhibitors of cyclo-oxygenase decreased aldosterone synthesis, it is possible that fatty acids other than arachidonic acid may be cyclo-oxygenated to products which regulate aldosterone production.  相似文献   

15.
K S Szalay  G Folly 《FEBS letters》1992,296(1):87-89
The combined effects of ACTH, beta-endorphin (beta-EP) and alpha-MSH were studied on the corticosteroidogenesis of isolated rat adrenocortical zona fasciculata and zona glomerulosa cells. beta-EP potentiated the effects of ACTH and alpha-MSH on the zona fasciculata corticosterone production but inhibited those on the zona glomerulosa aldosterone production. beta-EP did not affect the combined action of 4 x 10(-11) M ACTH and 5 x 10(-9) M alpha-MSH on the zona fasciculata or the zona glomerulosa cells, but it inhibited the stimulatory action of the combination of 1.6 x 10(-10) M ACTH and 10(-9) M alpha-MSH on the zona glomerulosa aldosterone production. An interaction of ACTH, beta-EP and alpha-MSH in relation to the zona fasciculata and zona glomerulosa corticosteroid production was found.  相似文献   

16.
The role of Ca2+ was studied in the release of the organic osmolyte sorbitol from rat IMCD cells in response to hypoosmotic stress. When cells were exposed to hypoosmotic media, sorbitol release was greatly reduced in Ca-free media which, on readmission of Ca2+, returned to control values. Under isoosmotic conditions, the ionophore A23187 stimulated sorbitol release without any effect on cell volume. Addition of trifluoperazine, a calmodulin inhibitor, but not the protein kinase C inhibitor H-7, inhibited the osmotically-activated sorbitol release. These results suggest that sorbitol release is a calmodulin-dependent event, possibly activated by a rise in intracellular calcium as a result of cell swelling.  相似文献   

17.
The effect of prostaglandin E (PGE) on aldosterone release and the mechanism of action of PGE in mediating the release of aldosterone were studied using isolated rat glomerulosa cells. PGE1 stimulated aldosterone release in a dose-dependent fashion at concentrations between 10(-8) and 10(-6) M and caused approximately a two-fold increase over the basal aldosterone level at 10(-6) M. A significant and dose-dependent increase in cAMP production was also produced by PGE1 at concentrations greater than 10(-8) M. Aldosterone release induced by 10(-7) M or 10(-6) M PGE2 was significantly reduced by a competitive receptor blocking PG-antagonist, SC 19220 (10(-7) M), but not affected by (Sar1, Ileu8)-angiotensin-II (A-II), a competitive inhibitor of A-II. PGE-stimulated aldosterone release was almost completely abolished by depleting the extracellular Ca2+ by EGTA, or by verapamil, a Ca2+-channel blocker or W-7, a calmodulin inhibitor. These findings suggest that PGE stimulates aldosterone release through the membrane receptor binding and activation of adenylate cyclase and that Ca2+-calmodulin system plays an essential role in mediating the steroidogenic action of PGE in the adrenal glomerulosa cells. However, the physiological significance of PGE in the regulation of aldosterone secretion remains to be elucidated.  相似文献   

18.
The relationship between aldosterone production and prosta-glandin E2 synthesis was evaluated using the responses of isolated rat adrenal glomerulosa cells to angiotensin II, ACTH and potassium. Simultaneous PGE2 and aldosterone measurements were made during timed incubations with these stimuli, and in incubations with arachidonic acid, meclofenamate, indomethacin, and aminoglutethamide. PGE2 and aldosterone production were assessed by radioimmunoassay. We were not able to demonstrate stimulation of PGE2 by angiotensin II, ACTH, or potassium despite significant increments in aldosterone production with these stimuli. Arachidonic acid enhanced PGE2 synthesis, but had no effect on aldosterone realease. Indomethacin and meclofenamate inhibited aldosterone secretion. Aminoglutethimide depressed aldosterone production, but had little effect on PGE2 levels in the media. These studies demonstrate that dienoic prostaglandins play no direct role in aldosterone production stimulated by angiotensin II, ACTH, or potassium in rat adrenal glomerulosa cells. Since inhibitors of cyclo-oxygenase decreased aldosterone synthesis, it is possible that fatty acids other than arachidonic acid may be cyclo-oxygenated to products which regulate aldosterone production.  相似文献   

19.
Dispersed chicken adrenocortical cells were preincubated with atrial natriuretic peptide (rANP), sodium nitroprusside (SNP) or 8-bromo cyclic GMP, followed by incubations with ACTH, chicken PTH, cholera toxin or various steroid intermediates of aldosterone production. Cyclic AMP production and aldosterone secretion were evaluated, in order to determine the sites of ANP inhibition in the sequence of events leading to aldosterone secretion. Dose-dependent inhibitory effects on ACTH-stimulated aldosterone secretion by rANP and SNP were observed. Both agents appeared to stimulate cGMP production by the particulate fraction of the avian adrenocortical cells. Aldosterone production, stimulated by cyclic AMP agonists such as ACTH, chicken PTH and cholera toxin, was significantly inhibited by ANP. On the other hand, ANP did not interfere with production or degradation of cAMP. Each of the aldosterone intermediates--pregnenolone, progesterone, 11-deoxycorticosterone and corticosterone--promoted aldosterone production when included in the incubation media. Atrial natriuretic peptide and SNP inhibited aldosterone secretion when enhanced by the intermediates, by about 40-60%, but the ACTH-stimulated secretion was inhibited by over 90%. The results suggest two sites of inhibition by ANP in the pathway of aldosterone synthesis and secretion: synthesis of cholesterol or pregnenolone, and conversion of corticosterone to aldosterone. The inhibition by 8-bromo cGMP of aldosterone secretion and the similar sites of inhibition for ANP and SNP suggest that cyclic GMP mediates the inhibition in both cases.  相似文献   

20.
Gastric inhibitory polypeptide (GIP) is a 42-amino acid peptide, belonging to the VIP-secretin-glucagon superfamily, some members of this group are able to regulate adrenocortical function. GIP-receptor mRNA has been detected in the rat adrenal cortex, but investigations on the effect of GIP on steroid-hormone secretion in this species are lacking. Hence, we have investigated the distribution of GIP binding sites in the rat adrenal gland and the effect of their activation in vivo and in vitro. Autoradiography evidenced abundant [125I]GIP binding sites exclusively in the inner adrenocortical layers, and the computer-assisted densitometric analysis of autoradiograms demonstrated that binding was displaced by cold GIP, but not by either ACTH or the selective ACTH-receptor antagonist corticotropin-inhibiting peptide (CIP). The intraperitoneal (IP) injection of GIP dose-dependently raised corticosterone, but not aldosterone plasma concentration: the maximal effective dose (10 nmol/rat) elicited a twofold increase. GIP did not affect aldosterone and cyclic-AMP release by dispersed zona glomerulosa cells. In contrast, GIP enhanced basal corticosterone secretion and cyclic-AMP release by dispersed inner adrenocortical cells in a concentration-dependent manner, and the maximal effective concentration (10(-7) M) evoked 1.5- and 2.4-fold rises in corticosterone and cyclic-AMP production, respectively. GIP (10(-7) M) did not display any additive or potentiating effect on corticosterone and cyclic-AMP responses to submaximal or maximal effective concentrations of ACTH. The corticosterone secretagogue action of 10(-7) M GIP was abolished by the protein kinase A (PKA) inhibitor H-89 (10(-5)M), and unaffected by CIP (10(-6)M). Collectively, these findings indicate that GIP exerts a moderate but statistically significant stimulatory effect on basal glucocorticoid secretion in rats, acting through specific receptors coupled with the adenylate cyclase/PKA-dependent signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号