首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometry (LC-MS-MS) method is described for the determination of duloxetine in human plasma. Duloxetine was extracted from plasma using methanol and separated on a C18 column. The mobile phase consisting of a mixture of acetonitrile and 5mM ammonium acetate (45:55, v/v, pH 3.5) was delivered at a flow rate of 0.3 ml/min. Atmospheric pressure ionization (API) source was operated in positive ion mode. Multiple reaction monitoring (MRM) mode using the transitions of m/z 298.1-->m/z 44.0 and m/z 376.2-->m/z 123.2 were used to quantify duloxetine and internal standard (I.S.), respectively. The linearity was obtained over the concentration range of 0.1-50.0 ng/ml and the lower limit of quantitation (LLOQ) was 0.1 ng/ml. This method was successfully applied to pharmacokinetic study of a duloxetine formulation product after oral administration to healthy human subjects.  相似文献   

2.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometric method is described for the determination of metolazone in human blood. Metolazone was extracted from blood using ethyl acetate and separated on a C18 column interfaced with a triple quadrupole tandem mass spectrometer. The mobile phase consisting of a mixture of acetonitrile, 10 mmol/l ammonium acetate and formic acid (60:40:0.1, v/v/v) was delivered at a flow rate of 0.5 ml/min. Electrospray ionization (ESI) source was operated in positive ion mode. Selected reaction monitoring (SRM) mode using the transitions of m/z 366-->m/z 259 and m/z 321-->m/z 275 were used to quantify metolazone and the lorazepam (internal standard), respectively. The linearity was obtained over the concentration range of 0.5-500 ng/ml for metolazone and the lower limit of quantitation (LLOQ) was 0.5 ng/ml. For each level of QC samples, inter- and intra-run precision was less than 8.07 and 3.56% (relative standard deviation (RSD)), respectively, and the bias was within +/-4.0%. This method was successfully applied to the pharmacokinetic study of metolazone formulation after oral administration to humans.  相似文献   

3.
A rapid, sensitive and accurate liquid chromatographic-tandem mass spectrometry method is described for the simultaneous determination of nebivolol and valsartan in human plasma. Nebivolol and valsartan were extracted from plasma using acetonitrile and separated on a C18 column. The mobile phase consisting of a mixture of acetonitrile and 0.05 mM formic acid (50:50 v/v, pH 3.5) was delivered at a flow rate of 0.25 ml/min. Atmospheric pressure ionization (API) source was operated in both positive and negative ion mode for nebivolol and valsartan, respectively. Selected reaction monitoring mode (SRM) using the transitions of m/z 406.1-->m/z 150.9; m/z 434.2-->m/z 179.0 and m/z 409.4-->m/z 228.1 were used to quantify nebivolol, valsartan and internal standard (IS), respectively. The linearity was obtained over the concentration range of 0.01-50.0 ng/ml and 1.0-2000.0 ng/ml and the lower limits of quantitation were 0.01 ng/ml and 1.0 ng/ml for nebivolol and valsartan, respectively. This method was successfully applied to the pharmacokinetic study of fixed dose combination (FDC) of nebivolol and valsartan formulation product after an oral administration to healthy human subjects.  相似文献   

4.
A highly sensitive method for quantitation of tamsulosin in human plasma using 1-(2,6-dimethyl-3-hydroxylphenoxy)-2-(3,4-methoxyphenylethylamino)-propane hydrochloride as the internal standard (I.S.) was established using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS). After alkalization with saturated sodium bicarbonate, plasma were extracted by ethyl acetate and separated by HPLC on a C18 reversed-phase column using a mobile phase of methanol-water-acetic acid-triethylamine (620:380:1.5:1.5, v/v). Analytes were quantitated using positive electrospray ionization in a quadrupole spectrometer. LC-ESI-MS was performed in the selected ion monitoring (SIM) mode using target ions at m/z 228 for tamsulosin and m/z 222 for the I.S. Calibration curves, which were linear over the range 0.2-30 ng/ml, were analyzed contemporaneously with each batch of samples, along with low (0.5 ng/ml), medium (3 ng/ml) and high (30 ng/ml) quality control samples. The intra- and inter-assay variability ranged from 2.14 to 8.87% for the low, medium and high quality control samples. The extraction recovery of tamsulosin from plasma was in the range of 84.2-94.5%. The method has been used successfully to study tamsulosin pharmacokinetics in adult humans.  相似文献   

5.
A rapid, sensitive and reliable method was developed to quantitate omeprazole in human plasma using liquid chromatography-tandem mass spectrometry. The assay is based on protein precipitation with acetonitrile and reversed-phase liquid chromatography performed on an octadecylsilica column (55 mm x 2mm, 3 microm particles), the mobile phase consisted of methanol-10 mM ammonium acetate (60:40, v/v). Omeprazole and flunitrazepam, the internal standard, elute at 0.80+/-0.10 min with a total run time 1.35 min. Quantification was through positive ion mode and selected reaction monitoring mode at m/z 346.1-->197.9 for omeprazole and m/z 314.0-->268.0 for flunitrazepam, respectively. The lower limit of quantitation was 1.2 ng/ml using 0.25 ml of plasma and linearity was observed from 1.2 to 1200 ng/ml. Within-day and between-day precision expressed by relative standard deviation was less than 5% and inaccuracy did not exceed 12%. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

6.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method with positive electrospray ionization (ESI) was developed for the quantification of ranolazine in human plasma. After liquid-liquid extraction of ranolazine and internal standard (ISTD) phenoprolamine from a 100 microl specimen of plasma, HPLC separation was achieved on a Nova-Pak C(18) column, using acetonitrile-water-formic acid-10% n-butylamine (70:30:0.5:0.08, v/v/v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 428.5-->m/z 279.1 for ranolazine and m/z 344.3-->m/z 165.1 for the internal standard, respectively. Linear calibration curves were obtained in the concentration range of 5-4000 ng/ml, with a lower limit of quantitation (LLOQ) of 5 ng/ml. The intra- and inter-day precision values were below 3.7% and accuracy was within +/-3.2% at all three quality control (QC) levels. This method was found suitable for the analysis of plasma samples collected during the phase I pharmacokinetic studies of ranolazine performed in 28 healthy volunteers after single oral doses from 200 mg to 800 mg.  相似文献   

7.
A selective and sensitive high performance liquid chromatography-electrospray ionization-tandem mass spectrometry (ESI-MS/MS) method for simultaneous determination of metformin and rosiglitazone in human plasma using phenformin as internal standard (IS) has been first developed and validated. Plasma samples were precipitated by acetonitrile and the analytes were separated on a prepacked Phenomenex Luna 5u CN 100A (150 mm x 2.0 mm I.D.) column using a mobile phase comprised of methanol:30 mM ammonium acetate pH 5.0 (80:20, v/v) delivered at 0.2 ml/min. Detection was performed on a Finnigan TSQ triple-quadrupole tandem mass spectrometer in positive ion selected reaction monitoring (SRM) mode using electrospray ionization. The ion transitions monitored were m/z 130.27-->71.11 for metformin, m/z 358.14-->135.07 for rosiglitazone and m/z 206.20-->105.19 for the IS. The standard curves were linear (r(2)>0.99) over the concentration range of 5-3000 ng/ml for metformin and 1.5-500 ng/ml for rosiglitazone with acceptable accuracy and precision, respectively. The within- and between-batch precisions were less than 15% of the relative standard deviation. The limit of detection (LOD) of both metformin and rosiglitazone was 1 ng/ml. The method described is precise and sensitive and has been successfully applied to the study of pharmacokinetics of compound metformin and rosiglitazone capsules in 12 healthy Chinese volunteers.  相似文献   

8.
A rapid, selective and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method with electrospray ionization (ESI) was developed and validated for the simultaneous determination of pitavastatin and its lactone in human plasma and urine. Following a liquid-liquid extraction, both the analytes and internal standard racemic i-prolact were separated on a BDS Hypersil C(8) column, using methanol-0.2% acetic acid in water (70: 30, v/v) as the mobile phase. The mass spectrometer was operated in multiple reaction monitoring (MRM) mode using the transition m/z 422.4-->m/z 290.3 for pitavastatin, m/z 404.3-->m/z 290.3 for pitavastatin lactone and m/z 406.3-->m/z 318.3 for the internal standard, respectively. Linear calibration curves of pitavastatin and its lactone were obtained in the concentration range of 1-200 ng/ml, with a lower limit of quantitation of 1 ng/ml. The intra- and inter-day precision values were less than 4.2%, and accuracies were between -8.1 and 3.5% for both analytes. The proposed method was utilized to support clinical pharmacokinetic studies of pitavastatin in healthy subjects following oral administration.  相似文献   

9.
A sensitive and specific high-performance liquid chromatography (HPLC)-electrospray ionization tandem mass spectrometry (MS-MS) was developed for the determination of bulleyaconitine A (BLA) in human plasma. BLA and internal standard (I.S.) ketoconazole were extracted from the plasma by a liquid-liquid extraction. The supernatant was evaporated to complete dryness and reconstituted with acetonitrile containing 0.1% acetic acid before injecting into an ODS MS column. The gradient mobile phase was composed of a mixture of acetonitrile (containing 0.1% acetic acid, v/v) and 0.1% acetic acid aqueous solution eluted at 0.3 ml/min. BLA and I.S. were determined by multiple reaction monitoring using precursor-->product ion combinations at m/z 644.6-->584.3 and 531.2-->81.6, respectively. Linearity was established for the concentration range of 0.12-6 ng/ml. The recoveries of BLA ranged from 96.93 to 113.9% and the R.S.D. was within 20%. The method is rapid and applicable to the pharmacokinetic studies of BLA in human.  相似文献   

10.
A sensitive high-performance liquid chromatography-tandem mass spectrometry assay for thiocoraline, an anti-tumor depsipeptide, in mouse plasma is described. Echinomycin, a quinoxaline peptide, was used as an internal standard. Thiocoraline was recovered from the mouse plasma using protein precipitation with acetonitrile and followed by solid-phase extraction of the supernatant. The mobile phase consisted of methanol (0.1% formic acid)-water (0.1% formic acid) (90:10, v/v). The analytical column was a YMC C(18). The standard curve was linear from 0.1 to 50 ng/ml (R(2)>0.99). The lower limit of quantitation was 0.1 ng/ml. The assay was specific based on the multiple reaction monitoring transitions at m/z 1157-->215 and m/z 1101-->243 for thiocoraline and the internal standard, echinomycin, respectively. The mean intra- and inter-day assay accuracies remained below 5 and 12%, respectively, for all calibration standards and quality control (QC) samples. The intra- and inter-day assay precisions were less than 11.4 and 9.5% for all QC levels, respectively. The utility of the assay was demonstrated by a pharmacokinetic study of i.v. (bolus) thiocoraline on CD-1 mice. Thiocoraline was stable in mouse plasma in an ice-water bath for 6 h and for three freeze-thaw cycles. The reconstituted thiocoraline after extraction and drying sample process was stable in the autosampler for over 24 h. The assay was able to quantify thiocoraline in plasma up to 48 h following dose. Pharmacokinetic analysis showed that thiocoraline has distinct pharmacokinetic profiling when dosed in different formulation solutions. The assay is currently used to measure thiocoraline plasma concentrations in support of a project to develop a suitable formulation with a desirable pharmacokinetic profile.  相似文献   

11.
Rhodamine 123 (R123), as a typical of P-gp substrate, was widely used to quantify P-glycoprotein (P-gp) functional efflux activity in vivo. A new, rapid and sensitive method was developed for quantifying R123 in rat plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). R123 and Rhodamine 6G (R6G, the internal standard, IS) were extracted from aliquots of plasma with ethyl acetate and dichloromethane (4:1) as the solvent and chromatographic separation was performed using a Zorbax Eclipse Plus C18 column. The mobile phase was composed of A: ammonium formate-formic acid buffer containing 5 mM ammonium formate and 0.1% formic acid and B: methanol (A:B, 5:95, v/v). To quantify R123 and IS respectively, multiple reaction monitoring (MRM) transition of m/z 345.2→285.2 and m/z 443.3→415.2 was performed. The analysis time was 4 min in positive mode; the calibration curve was linear in the concentration range of 1-200 ng/ml. The lowest limit of quantification (LLOQ) reached 1 ng/ml. The intra and inter-day precision were less than 9.2% for the low quality control (QC) level, and 3.4% for other QC levels, respectively, while the intra and inter-day relative errors ranged between -7.4% and 9.1% for three QC concentration levels. The LC-MS/MS method proved to be simple, accurate, reliable and with a shorter running time and has been successfully applied to evaluate the functional activity of P-glycoprotein in an absorption experiment in the rat.  相似文献   

12.
A simple, rapid and specific high-performance liquid chromatography coupled with tandem mass spectrometry (LC-MS-MS) has been developed and validated for the determination of ketoconazole in human plasma. The method used diethyl ether to extract the ketoconazole and the internal standard (I.S.) R51012 from alkalinized plasma sample. The LC separation was on a C(18) column (50 x 3 mm, 5 microm) using acetonitrile-water-formic acid (75:25:1, v/v/v) mobile phase. The retention times were approximately 1.8 min for both ketoconazole and the I.S. The MS-MS detection was by monitoring 531.2-->82.1 (m/z) for ketoconazole, and 733.5-->460.2 (m/z) for the I.S. The dynamic range was from 20.0 to 10000 ng/ml based on 0.1 ml plasma, with linear correlation coefficient of > or =0.9985. The run time was 2.5 min/injection. The recoveries of ketoconazole and the I.S. were 102 and 106%, respectively. The precision and accuracy of the control samples were with the relative standard deviations (RSDs) of < or =4.4% (n=6) and the relative errors (REs) from -0.6 to 1.4% for intra-day assay, and < or =8.6% RSD (n=18) and -1.4 to 0.9% RE for inter-day assay. The partial volume tests demonstrated good dilution integrity. Three freeze-thaw cycles, keeping plasma samples at ambient for 24 h, storing extracted samples at ambient for 24 h, and storing frozen plasma samples at approximately -20 degrees C for up to 2 months did not show substantial effects.  相似文献   

13.
The validation of a LC/MS/MS method for the determination of 8-methoxypsoralen (8-MOP) in human plasma and microdialysates after topical application is described. Plasma samples were extracted by liquid-liquid extraction with diisopropylether using 4,5',8-trimethylpsoralen (TMP) as internal standard. Chromatographic separation of plasma sample extracts was carried out using a short narrow-bore Nucleosil C18 column (30 mm x 2.0 mm i.d.) with acetonitrile/(2 mM ammonium acetate buffer, 2 mM acetic acid) (80:20, v/v). For mass spectrometric analysis an API 3000 triple quadrupole mass spectrometer was employed. The mass transitions used were m/z 217.2-->174.0 for 8-MOP and m/z 229.1-->142.1 for TMP. Microdialysis samples diluted with an equal amount of acetonitrile did not require any extraction and were analyzed directly on a narrow-bore Nucleosil C18 column (70 mm x 2.0mm i.d.) with acetonitrile/(2 mM ammonium acetate buffer, 2 mM acetic acid) (50:50, v/v) with the mass transition m/z 217.2-->174.0. The assays were validated over the concentration ranges of 0.5-50 ng/ml for plasma samples and 0.25-50 ng/ml for microdialysates, respectively.  相似文献   

14.
A sensitive and specific method for determination of viaminate in human plasma by using high-performance liquid chromatography coupled with electrospray tandem mass spectrometry (LC-MS/MS) was developed in this study. The plasma samples were simply deproteinated, extracted, evaporated, and then reconstituted in 200 microl of methanol prior to analysis. Chromatographic separation was carried out on a Shimadzu VP-ODS column (250 mm x 2.0 mm, 5 microm) with a mobile phase of methanol-water (95:5, v/v) at a flow rate of 0.2 ml/min. Quantification was performed in the negative-ion electrospray ionization mode by selected ion monitoring of the product ions at m/z 164 for viaminate and m/z 109 for testosterone propionate which was used as the internal standard. The corresponding parent ions were m/z 446 and m/z 345. A linear calibration curve was observed within the concentration range of 0.10-200 ng/ml. The lowest limit of quantitation (LLOQ) was 0.1 ng/ml. The extraction-efficiency at three concentrations was 100.7, 93.6, and 99.7%. Practical utility of this new LC-MS/MS method was confirmed in pilot pharmacokinetic studies in humans following oral administration.  相似文献   

15.
A sensitive and reliable method was developed to quantitate phenylephrine in human plasma using liquid chromatography-electrospray tandem mass spectrometry. The assay was based on solid-phase extraction with C18 cartridges and hydrophilic interaction chromatography performed on a pentafluorophenylpropylsilica column (50 mm x 4 mm, 3 microm particles), the mobile phase consisted of methanol-10 mM ammonium acetate (90:10, v/v). Quantification was through positive-ion mode and selected reaction monitoring at m/z 168.1-->135.0 for phenylephrine and m/z 182.1-->135.0 for internal standard etilefrin, respectively. The lower limit of quantitation was 51 pg/ml using 0.25 ml of plasma and linearity was observed from 51 to 5500 pg/ml. Within-day and between-day precision expressed by relative standard deviation was less than 12% and inaccuracy did not exceed 8% at all levels. The assay was applied to the analysis of samples from a pharmacokinetic study.  相似文献   

16.
A rapid, sensitive and selective LC-MS/MS method was developed and validated for the quantification of aniracetam in human plasma using estazolam as internal standard (IS). Following liquid-liquid extraction, the analytes were separated using a mobile phase of methanol-water (60:40, v/v) on a reverse phase C18 column and analyzed by a triple-quadrupole mass spectrometer in the selected reaction monitoring (SRM) mode using the respective [M+H]+ ions, m/z 220-->135 for aniracetam and m/z 295-->205 for the IS. The assay exhibited a linear dynamic range of 0.2-100 ng/mL for aniracetam in human plasma. The lower limit of quantification (LLOQ) was 0.2 ng/mL with a relative standard deviation of less than 15%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The validated LC-MS/MS method has been successfully applied to study the pharmacokinetics of aniracetam in healthy male Chinese volunteers.  相似文献   

17.
A simple, sensitive and specific HPLC method with tandem mass spectrometry (HPLC/MS/MS) detection has been developed and validated for the simultaneous quantification of tiloronoxim and its major active metabolite, tilorone, in human urine. The analytes, together with metoprolol, which was employed as an internal standard (IS), were extracted with a mixture solvent of chloroform/ethyl ether (1/2, v/v). The chromatographic separation was performed on a narrow-bore reversed phase HPLC column with a gradient mobile phase of methanol/water containing 15 mM ammonium bicarbonate (pH 10.5). The API 3,000 mass spectrometer was equipped with a TurboIonSpray interface and was operated on positive-ion, multiple reaction-monitoring (MRM) mode. The mass transitions monitored were m/z 426.3-->100.0, m/z 411.3-->100.0 and m/z 268.3-->116.1 for tiloronoxim, tilorone and the IS, respectively. The assay exhibited a linear dynamic range of 1-100 ng/ml for both tiloronoxim and tilorone based on the analysis of 0.2 ml aliquots of urine. The lower limit of quantification was 1 ng/ml for both compounds. Acceptable precision and accuracies were obtained for concentrations over the standard curve ranges. Run time of 8 min for each injection made it possible to analyze a high throughput of urine samples. The assay has been successfully used to analyze human urine samples from healthy volunteers.  相似文献   

18.
A novel preparative HPLC method separating silybin has been developed to meet the need for both silybin A and silybin B standard. After the preparation of silybin A and silybin B standard, a simple, sensitive, selective and reproducible liquid chromatography-tandem mass spectrometry (LC-MS-MS) method with negative electrospray ionization (ESI) was developed for the quantification of silybin A and silybin B in human plasma. Following rapid sample preparation, silybin A, silybin B and naringin (internal standard, ISTD) were separated on a Zorbax Eclipse XDB-C18 column, using methanol-water containing 0.1% formic acid (48:52, v/v) as the mobile phase. The mass spectrometer was operated in selected reaction monitoring (SRM) mode using the transition m/z 481.1-->300.9 for both silybin A and silybin B and m/z 579.2-->271.1 for naringin, respectively. Linear calibration curves were obtained in the concentration range of 2-5000ng/ml with a lower limit of quantitation (LLOQ) of 2ng/ml for both silybin A and silybin B, respectively. The intra- and inter-day precision values were below 7.5% and accuracy was within +/-4.9% at all three quality control (QC) levels, for both silybin A and silybin B, respectively. This method was successfully applied to the stereospecific analysis of silybin in plasma samples from a pharmacokinetic study of silybin A and silybin B in 22 healthy male Chinese volunteers after a single oral dose of silybin-phosphatidylcholine complex (equivalent to 280mg silybin, including 133mg silybin A and 147mg silybin B).  相似文献   

19.
A simple, sensitive and specific liquid chromatography coupled electrospray ionization mass spectrometric (LC/ESI/MS) method for the determination of 13-O-demethylated metabolite (MI), one of the major metabolites of tacrolimus has been developed. The assay uses 32-demethoxyrapamycin (IS) as the internal standard; ethyl acetate as extraction solvent; a Hypersil-Keystone Beta Basic-18 reversed-phase column; and a gradient mobile phase of consisting 0.1% formic acid in water and methanol-acetonitrile (3:49, v/v). Mass detection is performed on a single quadrupole mass spectrometer equipped with an electrospray ionization (ESI) interface and operated in a positive ionization mode. MI in the microsomal incubates was quantitated by computing the peak area ratio (MI/IS) analyzed in single ion monitoring (SIM) mode (m/z: 804 and m/z: 901 for MI and IS, respectively). Precision of the assay was determined by calculating the intra-run and inter-run variation at three concentrations (15, 25, 80 ng/ml); the intra run relative standard deviation (R.S.D.) was less than 10% and ranged from 5.0 to 8.3%; and the inter-run R.S.D. was less than 10% and ranged from 4.6 to 9.6%. The limits of detection was 2 ng/ml. This assay has been used to evaluate the effect of three human immunodeficiency virus (HIV) protease inhibitors on the metabolism of tacrolimus in human liver microsomes.  相似文献   

20.
A simple, rapid, novel and sensitive liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of tacrolimus (I) in human plasma, a narrow therapeutic index, potent macrolide immunosuppressive drug. The analyte and internal standard (tamsulosin (II)) were extracted by liquid-liquid extraction with t-butylmethylether using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on reverse phase Xterra ODS column with a mobile phase of 99% methanol and 1% 10mM ammonium acetate buffer. The deprotonate of analyte was quantitated in negative ionization by multiple reaction monitoring (MRM) with a mass spectrometer. The mass transitions m/z 802.5-->560.3 and m/z 407.2-->151.9 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.05-25ng/ml for tacrolimus in human plasma. The lower limit of quantitation was 50pg/ml with a relative standard deviation of less than 20%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. Run time of 2min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in comparative bioavailability studies. The tacrolimus plasma concentration profile could be obtained for pharmacokinetic study. The observed maximum plasma concentration (C(max)) of tacrolimus (5mg oral dose) is 440pg/ml, time to observed maximum plasma concentration (T(max)) is 2.5h and elimination half-life (T(1/2)) is 21h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号