共查询到20条相似文献,搜索用时 15 毫秒
1.
Getachew A. Dagne 《Mathematical biosciences》2010,224(2):126-130
This paper presents new methods, using a Bayesian approach, for analyzing longitudinal count data with excess zeros and nonlinear effects of continuously valued covariates. In longitudinal count data there are many problems that can make the use of a zero-inflated Poisson (ZIP) model ineffective. These problems are unobserved heterogeneity and nonlinear effects of continuously valued covariates. Our proposed semiparametric model can simultaneously handle these problems in a unified framework. The framework accounts for heterogeneity by incorporating random effects and has two components. The parametric component of the model which deals with the linear effects of time invariant covariates and the non-parametric component which gives an arbitrary smooth function to model the effect of time or time-varying covariates on the logarithm of mean count. The proposed methods are illustrated by analyzing longitudinal count data on the assessment of an efficacy of pesticides in controlling the reproduction of whitefly. 相似文献
2.
Airlane P. Alencar Julio M. Singer Francisco Marcelo M. Rocha 《Biometrical journal. Biometrische Zeitschrift》2012,54(2):214-229
The choice of an appropriate family of linear models for the analysis of longitudinal data is often a matter of concern for practitioners. To attenuate such difficulties, we discuss some issues that emerge when analyzing this type of data via a practical example involving pretest–posttest longitudinal data. In particular, we consider log‐normal linear mixed models (LNLMM), generalized linear mixed models (GLMM), and models based on generalized estimating equations (GEE). We show how some special features of the data, like a nonconstant coefficient of variation, may be handled in the three approaches and evaluate their performance with respect to the magnitude of standard errors of interpretable and comparable parameters. We also show how different diagnostic tools may be employed to identify outliers and comment on available software. We conclude by noting that the results are similar, but that GEE‐based models may be preferable when the goal is to compare the marginal expected responses. 相似文献
3.
This paper studies a class of Poisson mixture models that includes covariates in rates. This model contains Poisson regression and independent Poisson mixtures as special cases. Estimation methods based on the EM and quasi-Newton algorithms, properties of these estimates, a model selection procedure, residual analysis, and goodness-of-fit test are discussed. A Monte Carlo study investigates implementation and model choice issues. This methodology is used to analyze seizure frequency and Ames salmonella assay data. 相似文献
4.
A family of covariance models for longitudinal counts with predictive covariates is presented. These models account for overdispersion, heteroscedasticity, and dependence among repeated observations. The approach is a quasi-likelihood regression similar to the formulation given by Liang and Zeger (1986, Biometrika 73, 13-22). Generalized estimating equations for both the covariate parameters and the variance-covariance parameters are presented. Large-sample properties of the parameter estimates are derived. The proposed methods are illustrated by an analysis of epileptic seizure count data arising from a study of progabide as an adjuvant therapy for partial seizures. 相似文献
5.
Summary . Recently, median regression models have received increasing attention. When continuous responses follow a distribution that is quite different from a normal distribution, usual mean regression models may fail to produce efficient estimators whereas median regression models may perform satisfactorily. In this article, we discuss using median regression models to deal with longitudinal data with dropouts. Weighted estimating equations are proposed to estimate the median regression parameters for incomplete longitudinal data, where the weights are determined by modeling the dropout process. Consistency and the asymptotic distribution of the resultant estimators are established. The proposed method is used to analyze a longitudinal data set arising from a controlled trial of HIV disease ( Volberding et al., 1990 , The New England Journal of Medicine 322, 941–949). Simulation studies are conducted to assess the performance of the proposed method under various situations. An extension to estimation of the association parameters is outlined. 相似文献
6.
Heagerty PJ 《Biometrics》2002,58(2):342-351
Marginal generalized linear models are now frequently used for the analysis of longitudinal data. Semiparametric inference for marginal models was introduced by Liang and Zeger (1986, Biometrics 73, 13-22). This article develops a general parametric class of serial dependence models that permits likelihood-based marginal regression analysis of binary response data. The methods naturally extend the first-order Markov models of Azzalini (1994, Biometrika 81, 767-775) and prove computationally feasible for long series. 相似文献
7.
Measurement errors in covariates may result in biased estimates in regression analysis. Most methods to correct this bias assume nondifferential measurement errors-i.e., that measurement errors are independent of the response variable. However, in regression models for zero-truncated count data, the number of error-prone covariate measurements for a given observational unit can equal its response count, implying a situation of differential measurement errors. To address this challenge, we develop a modified conditional score approach to achieve consistent estimation. The proposed method represents a novel technique, with efficiency gains achieved by augmenting random errors, and performs well in a simulation study. The method is demonstrated in an ecology application. 相似文献
8.
Jinling Chi Ying Zhou Lili Chen Yajing Zhou 《Biometrical journal. Biometrische Zeitschrift》2020,62(6):1428-1442
Count phenotypes with excessive zeros are often observed in the biological world. Researchers have studied many statistical methods for mapping the quantitative trait loci (QTLs) of zero-inflated count phenotypes. However, most of the existing methods consist of finding the approximate positions of the QTLs on the chromosome by genome-wide scanning. Additionally, most of the existing methods use the EM algorithm for parameter estimation. In this paper, we propose a Bayesian interval mapping scheme of QTLs for zero-inflated count data. The method takes advantage of a zero-inflated generalized Poisson (ZIGP) regression model to study the influence of QTLs on the zero-inflated count phenotype. The MCMC algorithm is used to estimate the effects and position parameters of QTLs. We use the Haldane map function to realize the conversion between recombination rate and map distance. Monte Carlo simulations are conducted to test the applicability and advantage of the proposed method. The effects of QTLs on the formation of mouse cholesterol gallstones were demonstrated by analyzing an mouse data set. 相似文献
9.
10.
In the context of analyzing ordinal functional limitation responses from the Longitudinal Study of Aging, we investigate the association between current functional limitation and previous year's limitation and its modification by physical activity and multiple causes of drop-out. We accommodate the longitudinal nature of the multiple causes of informative drop-out (death and unknown loss-to-follow-up) with a mixed effects logistic model. Under the proposed model with a random intercept and slope, the ordinal functional outcome and multiple discrete time survival profiles share a common random effect structure. This shared parameter selection model assumes that the multiple causes of drop-out are conditionally independent of the functional limitation outcome given the underlying random effect representing an individual's trajectory of general health status across time. Although it is not possible to fully assess the adequacy of this assumption, we assess the robustness of the approach by varying the assumptions underlying the proposed model, such as the random effects distribution and the drop-out component. It appears that between-subject differences in initial functional limitation are strongly associated with future functional limitation and that this association is stronger for those who do not have physical activity regardless of the random effects and informative drop-out specifications. In contrast, the association between current functional limitation and previous trajectory of functional status within an individual is weaker and more sensitive to changes in the random effects and drop-out assumptions. 相似文献
11.
Semiparametric regression for count data 总被引:3,自引:0,他引:3
12.
Fitzmaurice GM Lipsitz SR Ibrahim JG Gelber R Lipshultz S 《Biostatistics (Oxford, England)》2006,7(3):469-485
In many observational studies, individuals are measured repeatedly over time, although not necessarily at a set of pre-specified occasions. Instead, individuals may be measured at irregular intervals, with those having a history of poorer health outcomes being measured with somewhat greater frequency and regularity. In this paper, we consider likelihood-based estimation of the regression parameters in marginal models for longitudinal binary data when the follow-up times are not fixed by design, but can depend on previous outcomes. In particular, we consider assumptions regarding the follow-up time process that result in the likelihood function separating into two components: one for the follow-up time process, the other for the outcome measurement process. The practical implication of this separation is that the follow-up time process can be ignored when making likelihood-based inferences about the marginal regression model parameters. That is, maximum likelihood (ML) estimation of the regression parameters relating the probability of success at a given time to covariates does not require that a model for the distribution of follow-up times be specified. However, to obtain consistent parameter estimates, the multinomial distribution for the vector of repeated binary outcomes must be correctly specified. In general, ML estimation requires specification of all higher-order moments and the likelihood for a marginal model can be intractable except in cases where the number of repeated measurements is relatively small. To circumvent these difficulties, we propose a pseudolikelihood for estimation of the marginal model parameters. The pseudolikelihood uses a linear approximation for the conditional distribution of the response at any occasion, given the history of previous responses. The appeal of this approximation is that the conditional distributions are functions of the first two moments of the binary responses only. When the follow-up times depend only on the previous outcome, the pseudolikelihood requires correct specification of the conditional distribution of the current outcome given the outcome at the previous occasion only. Results from a simulation study and a study of asymptotic bias are presented. Finally, we illustrate the main results using data from a longitudinal observational study that explored the cardiotoxic effects of doxorubicin chemotherapy for the treatment of acute lymphoblastic leukemia in children. 相似文献
13.
We propose a response-adaptive model for functional linear regression, which is adapted to sparsely sampled longitudinal responses. Our method aims at predicting response trajectories and models the regression relationship by directly conditioning the sparse and irregular observations of the response on the predictor, which can be of scalar, vector, or functional type. This obliterates the need to model the response trajectories, a task that is challenging for sparse longitudinal data and was previously required for functional regression implementations for longitudinal data. The proposed approach turns out to be superior compared to previous functional regression approaches in terms of prediction error. It encompasses a variety of regression settings that are relevant for the functional modeling of longitudinal data in the life sciences. The improved prediction of response trajectories with the proposed response-adaptive approach is illustrated for a longitudinal study of Kiwi weight growth and by an analysis of the dynamic relationship between viral load and CD4 cell counts observed in AIDS clinical trials. 相似文献
14.
15.
Eliot M Ferguson J Reilly MP Foulkes AS 《The international journal of biostatistics》2011,7(1):Article 37
Technological advances facilitating the acquisition of large arrays of biomarker data have led to new opportunities to understand and characterize disease progression over time. This creates an analytical challenge, however, due to the large numbers of potentially informative markers, the high degrees of correlation among them, and the time-dependent trajectories of association. We propose a mixed ridge estimator, which integrates ridge regression into the mixed effects modeling framework in order to account for both the correlation induced by repeatedly measuring an outcome on each individual over time, as well as the potentially high degree of correlation among possible predictor variables. An expectation-maximization algorithm is described to account for unknown variance and covariance parameters. Model performance is demonstrated through a simulation study and an application of the mixed ridge approach to data arising from a study of cardiometabolic biomarker responses to evoked inflammation induced by experimental low-dose endotoxemia. 相似文献
16.
Several models are developed for the estimation of the rate of exponential die-off from decontamination data. Calculations with illustrative data are reported which indicate that the estimation of this rate and its variance are sensitive to changes in modelling assumptions. Since extrapolation using this estimated rate is used in the specification of planetary quarantine standards, special care should be taken in the selection of an appropriate model and corresponding estimation procedure for the analysis of each set of decontamination data to be used for this purpose. 相似文献
17.
18.
19.
Motivated by the analysis of longitudinal neuroimaging studies, we study the longitudinal functional linear regression model under asynchronous data setting for modeling the association between clinical outcomes and functional (or imaging) covariates. In the asynchronous data setting, both covariates and responses may be measured at irregular and mismatched time points, posing methodological challenges to existing statistical methods. We develop a kernel weighted loss function with roughness penalty to obtain the functional estimator and derive its representer theorem. The rate of convergence, a Bahadur representation, and the asymptotic pointwise distribution of the functional estimator are obtained under the reproducing kernel Hilbert space framework. We propose a penalized likelihood ratio test to test the nullity of the functional coefficient, derive its asymptotic distribution under the null hypothesis, and investigate the separation rate under the alternative hypotheses. Simulation studies are conducted to examine the finite-sample performance of the proposed procedure. We apply the proposed methods to the analysis of multitype data obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, which reveals significant association between 21 regional brain volume density curves and the cognitive function. Data used in preparation of this paper were obtained from the ADNI database (adni.loni.usc.edu). 相似文献
20.
‘‘For how many days during the past 30 days was your mental health not good?” The responses to this question measure self-reported mental health and can be linked to important covariates in the National Health and Nutrition Examination Survey (NHANES). However, these count variables present major distributional challenges: The data are overdispersed, zero-inflated, bounded by 30, and heaped in 5- and 7-day increments. To address these challenges—which are especially common for health questionnaire data—we design a semiparametric estimation and inference framework for count data regression. The data-generating process is defined by simultaneously transforming and rounding (star ) a latent Gaussian regression model. The transformation is estimated nonparametrically and the rounding operator ensures the correct support for the discrete and bounded data. Maximum likelihood estimators are computed using an expectation-maximization (EM) algorithm that is compatible with any continuous data model estimable by least squares. star regression includes asymptotic hypothesis testing and confidence intervals, variable selection via information criteria, and customized diagnostics. Simulation studies validate the utility of this framework. Using star regression, we identify key factors associated with self-reported mental health and demonstrate substantial improvements in goodness-of-fit compared to existing count data regression models. 相似文献