首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
2.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicits an interferon (IFN) deficiency state, which aggravates the type I interferon deficiency and slow IFN responses, which associate with e.g. aging and obesity. Additionally, SARS-CoV-2 may also elicit a cytokine storm, which accounts for disease progression and ultimately the urgent need of ventilator support. Based upon several reports, it has been argued that early treatment with IFN-alpha2 or IFN-beta, preferentially in the early disease stage, may prohibit disease progression. Similarly, preliminary studies have shown that JAK1/2 inhibitor treatment with ruxolitinib or baricitinib may decrease mortality by dampening the deadly cytokine storm, which – in addition to the virus itself - also contributes to multi-organ thrombosis and multi-organ failure. Herein, we describe the rationale for treatment with IFNs (alpha2 or beta) and ruxolitinib emphasizing the urgent need to explore these agents in the treatment of SARS-CoV-2 – both as monotherapies and in combination. In this context, we take advantage of several safety and efficacy studies in patients with the chronic myeloproliferative blood cancers (essential thrombocythemia, polycythemia vera and myelofibrosis) (MPNs), in whom IFN-alpha2 and ruxolitinib have been used successfully for the last 10 (ruxolitinib) to 30 years (IFN) as monotherapies and most recently in combination as well. In the context of these agents being highly immunomodulating (IFN boosting immune cells and JAK1/2 inhibitors being highly immunosuppressive and anti-inflammatory), we also discuss if statins and hydroxyurea, both agents possessing anti-inflammatory, antithrombotic and antiviral potentials, might be inexpensive agents to be repurposed in the treatment of SARS-CoV-2.  相似文献   

3.
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号